1
|
Du X, Yang Y, Xiao G, Yang M, Yuan L, Qin L, He R, Wang L, Wu M, Wu S, Feng J, Xiang Y, Qu X, Liu H, Qin X, Liu C. Respiratory syncytial virus infection-induced mucus secretion by down-regulation of miR-34b/c-5p expression in airway epithelial cells. J Cell Mol Med 2020; 24:12694-12705. [PMID: 32939938 PMCID: PMC7687004 DOI: 10.1111/jcmm.15845] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/15/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022] Open
Abstract
Severe RSV infection is the main cause of hospitalization to children under the age of five. The regulation of miRNAs on the severity of RSV infection is unclear. The aim of the study was to identify the critical differential expression miRNAs (DE miRNAs) that can regulate the pathological response in RSV‐infected airway epithelial cells. In this study, miRNA and mRNA chips of RSV‐infected airway epithelia from Gene Expression Omnibus (GEO) were screened and analysed, separately. DE miRNAs‐targeted genes were performed for further pathway and process enrichment analysis. DE miRNA‐targeted gene functional network was constructed on the basis of miRNA‐mRNA interaction. The screened critical miRNA was also investigated by bioinformatics analysis. Then, RSV‐infected human bronchial epithelial cells (HBECs) were constructed to verify the expression of the DE miRNAs. Finally, specific synthetic DE miRNAs mimics were used to confirm the effect of DE miRNAs on the RSV‐infected HBECs. 45 DE miRNAs were identified from GEO62306 dataset. Our results showed that hsa‐mir‐34b‐5p and hsa‐mir‐34c‐5p decreased significantly in HBECs after RSV infection. Consistent with the biometric analysis, hsa‐mir‐34b/c‐5p is involved in the regulation of mucin expression gene MUC5AC. In RSV‐infected HBECs, the inducement of MUC5AC production by decreased hsa‐mir‐34b/c‐5p was partly mediated through activation of c‐Jun. These findings provide new insights into the mechanism of mucus obstruction after RSV infection and represent valuable targets for RSV infection and airway obstruction treatment.
Collapse
Affiliation(s)
- Xizi Du
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China.,Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China.,Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, China
| | - Yu Yang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia.,School of Basic Medical Sciences & Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Lin Yuan
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China.,Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, China
| | - Ruoxi He
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China.,Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, China
| | - Leyuan Wang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Mengping Wu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - ShuangYan Wu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Juntao Feng
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China.,Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, China
| | - Yang Xiang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangping Qu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Huijun Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoqun Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China.,Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China.,Research Center of China-Africa Infectious Diseases, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|