1
|
Arkhipova IR, Yushenova IA, Rodriguez F. Shaping eukaryotic epigenetic systems by horizontal gene transfer. Bioessays 2023; 45:e2200232. [PMID: 37339822 PMCID: PMC10287040 DOI: 10.1002/bies.202200232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 06/22/2023]
Abstract
DNA methylation constitutes one of the pillars of epigenetics, relying on covalent bonds for addition and/or removal of chemically distinct marks within the major groove of the double helix. DNA methyltransferases, enzymes which introduce methyl marks, initially evolved in prokaryotes as components of restriction-modification systems protecting host genomes from bacteriophages and other invading foreign DNA. In early eukaryotic evolution, DNA methyltransferases were horizontally transferred from bacteria into eukaryotes several times and independently co-opted into epigenetic regulatory systems, primarily via establishing connections with the chromatin environment. While C5-methylcytosine is the cornerstone of plant and animal epigenetics and has been investigated in much detail, the epigenetic role of other methylated bases is less clear. The recent addition of N4-methylcytosine of bacterial origin as a metazoan DNA modification highlights the prerequisites for foreign gene co-option into the host regulatory networks, and challenges the existing paradigms concerning the origin and evolution of eukaryotic regulatory systems.
Collapse
Affiliation(s)
- Irina R Arkhipova
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, Massachusetts, USA
| | - Irina A Yushenova
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, Massachusetts, USA
| | - Fernando Rodriguez
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, Massachusetts, USA
| |
Collapse
|
2
|
Vogelgsang L, Nisar A, Scharf SA, Rommerskirchen A, Belick D, Dilthey A, Henrich B. Characterisation of Type II DNA Methyltransferases of Metamycoplasma hominis. Microorganisms 2023; 11:1591. [PMID: 37375093 DOI: 10.3390/microorganisms11061591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial virulence, persistence and defence are affected by epigenetic modifications, including DNA methylation. Solitary DNA methyltransferases modulate a variety of cellular processes and influence bacterial virulence; as part of a restriction-modification (RM) system, they act as a primitive immune system in methylating the own DNA, while unmethylated foreign DNA is restricted. We identified a large family of type II DNA methyltransferases in Metamycoplasma hominis, comprising six solitary methyltransferases and four RM systems. Motif-specific 5mC and 6mA methylations were identified with a tailored Tombo analysis on Nanopore reads. Selected motifs with methylation scores >0.5 fit with the gene presence of DAM1 and DAM2, DCM2, DCM3, and DCM6, but not for DCM1, whose activity was strain-dependent. The activity of DCM1 for CmCWGG and of both DAM1 and DAM2 for GmATC was proven in methylation-sensitive restriction and finally for recombinant rDCM1 and rDAM2 against a dam-, dcm-negative background. A hitherto unknown dcm8/dam3 gene fusion containing a (TA) repeat region of varying length was characterized within a single strain, suggesting the expression of DCM8/DAM3 phase variants. The combination of genetic, bioinformatics, and enzymatic approaches enabled the detection of a huge family of type II DNA MTases in M. hominis, whose involvement in virulence and defence can now be characterized in future work.
Collapse
Affiliation(s)
- Lars Vogelgsang
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty of the Heinrich-Heine-University Duesseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany
| | - Azlan Nisar
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty of the Heinrich-Heine-University Duesseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany
| | - Sebastian Alexander Scharf
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty of the Heinrich-Heine-University Duesseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany
| | - Anna Rommerskirchen
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty of the Heinrich-Heine-University Duesseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany
| | - Dana Belick
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty of the Heinrich-Heine-University Duesseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany
| | - Alexander Dilthey
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty of the Heinrich-Heine-University Duesseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany
| | - Birgit Henrich
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty of the Heinrich-Heine-University Duesseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany
| |
Collapse
|
3
|
Dordet-Frisoni E, Vandecasteele C, Contarin R, Sagné E, Baranowski E, Klopp C, Nouvel LX, Citti C. Impacts of Mycoplasma agalactiae restriction-modification systems on pan-epigenome dynamics and genome plasticity. Microb Genom 2022; 8:mgen000829. [PMID: 35576144 PMCID: PMC9465063 DOI: 10.1099/mgen.0.000829] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
DNA methylations play an important role in the biology of bacteria. Often associated with restriction modification (RM) systems, they are important drivers of bacterial evolution interfering in horizontal gene transfer events by providing a defence against foreign DNA invasion or by favouring genetic transfer through production of recombinogenic DNA ends. Little is known regarding the methylome of the Mycoplasma genus, which encompasses several pathogenic species with small genomes. Here, genome-wide detection of DNA methylations was conducted using single molecule real-time (SMRT) and bisulphite sequencing in several strains of Mycoplasma agalactiae, an important ruminant pathogen and a model organism. Combined with whole-genome analysis, this allowed the identification of 19 methylated motifs associated with three orphan methyltransferases (MTases) and eight RM systems. All systems had a homolog in at least one phylogenetically distinct Mycoplasma spp. Our study also revealed that several superimposed genetic events may participate in the M. agalactiae dynamic epigenomic landscape. These included (i) DNA shuffling and frameshift mutations that affect the MTase and restriction endonuclease content of a clonal population and (ii) gene duplication, erosion, and horizontal transfer that modulate MTase and RM repertoires of the species. Some of these systems were experimentally shown to play a major role in mycoplasma conjugative, horizontal DNA transfer. While the versatility of DNA methylation may contribute to regulating essential biological functions at cell and population levels, RM systems may be key in mycoplasma genome evolution and adaptation by controlling horizontal gene transfers.
Collapse
Affiliation(s)
- Emilie Dordet-Frisoni
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
- Present address: INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | | | - Eveline Sagné
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | - Christophe Klopp
- INRAE, UR875 MIAT, Sigenae, BioInfo Genotoul, BioInfoMics, F-31326 Auzeville, France
| | | | | |
Collapse
|
4
|
Mechanisms and Biological Roles of DNA Methyltransferases and DNA Methylation: From Past Achievements to Future Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:1-19. [DOI: 10.1007/978-3-031-11454-0_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Woodcock CB, Horton JR, Zhang X, Blumenthal RM, Cheng X. Beta class amino methyltransferases from bacteria to humans: evolution and structural consequences. Nucleic Acids Res 2020; 48:10034-10044. [PMID: 32453412 PMCID: PMC7544214 DOI: 10.1093/nar/gkaa446] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 01/09/2023] Open
Abstract
S-adenosyl-l-methionine dependent methyltransferases catalyze methyl transfers onto a wide variety of target molecules, including DNA and RNA. We discuss a family of methyltransferases, those that act on the amino groups of adenine or cytosine in DNA, have conserved motifs in a particular order in their amino acid sequence, and are referred to as class beta MTases. Members of this class include M.EcoGII and M.EcoP15I from Escherichia coli, Caulobacter crescentus cell cycle-regulated DNA methyltransferase (CcrM), the MTA1-MTA9 complex from the ciliate Oxytricha, and the mammalian MettL3-MettL14 complex. These methyltransferases all generate N6-methyladenine in DNA, with some members having activity on single-stranded DNA as well as RNA. The beta class of methyltransferases has a unique multimeric feature, forming either homo- or hetero-dimers, allowing the enzyme to use division of labor between two subunits in terms of substrate recognition and methylation. We suggest that M.EcoGII may represent an ancestral form of these enzymes, as its activity is independent of the nucleic acid type (RNA or DNA), its strandedness (single or double), and its sequence (aside from the target adenine).
Collapse
Affiliation(s)
- Clayton B Woodcock
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Hasan MM, Manavalan B, Khatun MS, Kurata H. i4mC-ROSE, a bioinformatics tool for the identification of DNA N4-methylcytosine sites in the Rosaceae genome. Int J Biol Macromol 2019; 157:752-758. [PMID: 31805335 DOI: 10.1016/j.ijbiomac.2019.12.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022]
Abstract
One of the most important epigenetic modifications is N4-methylcytosine, which regulates many biological processes including DNA replication and chromosome stability. Identification of N4-methylcytosine sites is pivotal to understand specific biological functions. Herein, we developed the first bioinformatics tool called i4mC-ROSE for identifying N4-methylcytosine sites in the genomes of Fragaria vesca and Rosa chinensis in the Rosaceae, which utilizes a random forest classifier with six encoding methods that cover various aspects of DNA sequence information. The i4mC-ROSE predictor achieves area under the curve scores of 0.883 and 0.889 for the two genomes during cross-validation. Moreover, the i4mC-ROSE outperforms other classifiers tested in this study when objectively evaluated on the independent datasets. The proposed i4mC-ROSE tool can serve users' demand for the prediction of 4mC sites in the Rosaceae genome. The i4mC-ROSE predictor and utilized datasets are publicly accessible at http://kurata14.bio.kyutech.ac.jp/i4mC-ROSE/.
Collapse
Affiliation(s)
- Md Mehedi Hasan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Balachandran Manavalan
- Department of Physiology, Ajou University School of Medicine, Suwon 443380, Republic of Korea
| | - Mst Shamima Khatun
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; Biomedical Informatics R&D Center, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.
| |
Collapse
|
7
|
Bower EKM, Cooper LP, Roberts GA, White JH, Luyten Y, Morgan RD, Dryden DTF. A model for the evolution of prokaryotic DNA restriction-modification systems based upon the structural malleability of Type I restriction-modification enzymes. Nucleic Acids Res 2019; 46:9067-9080. [PMID: 30165537 PMCID: PMC6158711 DOI: 10.1093/nar/gky760] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 08/21/2018] [Indexed: 12/28/2022] Open
Abstract
Restriction Modification (RM) systems prevent the invasion of foreign genetic material into bacterial cells by restriction and protect the host's genetic material by methylation. They are therefore important in maintaining the integrity of the host genome. RM systems are currently classified into four types (I to IV) on the basis of differences in composition, target recognition, cofactors and the manner in which they cleave DNA. Comparing the structures of the different types, similarities can be observed suggesting an evolutionary link between these different types. This work describes the ‘deconstruction’ of a large Type I RM enzyme into forms structurally similar to smaller Type II RM enzymes in an effort to elucidate the pathway taken by Nature to form these different RM enzymes. Based upon the ability to engineer new enzymes from the Type I ‘scaffold’, an evolutionary pathway and the evolutionary pressures required to move along the pathway from Type I RM systems to Type II RM systems are proposed. Experiments to test the evolutionary model are discussed.
Collapse
Affiliation(s)
- Edward K M Bower
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh EH9 3FJ, UK
| | - Laurie P Cooper
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh EH9 3FJ, UK
| | - Gareth A Roberts
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh EH9 3FJ, UK
| | - John H White
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh EH9 3FJ, UK
| | - Yvette Luyten
- New England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA
| | - Richard D Morgan
- New England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA
| | - David T F Dryden
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
8
|
Liu ZY, Xing JF, Chen W, Luan MW, Xie R, Huang J, Xie SQ, Xiao CL. MDR: an integrative DNA N6-methyladenine and N4-methylcytosine modification database for Rosaceae. HORTICULTURE RESEARCH 2019; 6:78. [PMID: 31240103 PMCID: PMC6572862 DOI: 10.1038/s41438-019-0160-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 05/07/2023]
Abstract
Eukaryotic DNA methylation has been receiving increasing attention for its crucial epigenetic regulatory function. The recently developed single-molecule real-time (SMRT) sequencing technology provides an efficient way to detect DNA N6-methyladenine (6mA) and N4-methylcytosine (4mC) modifications at a single-nucleotide resolution. The family Rosaceae contains horticultural plants with a wide range of economic importance. However, little is currently known regarding the genome-wide distribution patterns and functions of 6mA and 4mC modifications in the Rosaceae. In this study, we present an integrated DNA 6mA and 4mC modification database for the Rosaceae (MDR, http://mdr.xieslab.org). MDR, the first repository for displaying and storing DNA 6mA and 4mC methylomes from SMRT sequencing data sets for Rosaceae, includes meta and statistical information, methylation densities, Gene Ontology enrichment analyses, and genome search and browse for methylated sites in NCBI. MDR provides important information regarding DNA 6mA and 4mC methylation and may help users better understand epigenetic modifications in the family Rosaceae.
Collapse
Affiliation(s)
- Zhao-Yu Liu
- Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Institute of Tropical Agriculture and Forestry, Hainan University, 570228 Haikou, China
| | - Jian-Feng Xing
- Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Institute of Tropical Agriculture and Forestry, Hainan University, 570228 Haikou, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Wei Chen
- Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Institute of Tropical Agriculture and Forestry, Hainan University, 570228 Haikou, China
| | - Mei-Wei Luan
- Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Institute of Tropical Agriculture and Forestry, Hainan University, 570228 Haikou, China
| | - Rui Xie
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, 010031 Huhhot, China
| | - Jing Huang
- Department of Agronomy, College of Agriculture, Purdue University, West Lafayette, IN 47907 USA
| | - Shang-Qian Xie
- Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Institute of Tropical Agriculture and Forestry, Hainan University, 570228 Haikou, China
| | - Chuan-Le Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| |
Collapse
|
9
|
Chen W, Yang H, Feng P, Ding H, Lin H. iDNA4mC: identifying DNA N4-methylcytosine sites based on nucleotide chemical properties. Bioinformatics 2018; 33:3518-3523. [PMID: 28961687 DOI: 10.1093/bioinformatics/btx479] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/25/2017] [Indexed: 12/24/2022] Open
Abstract
Motivation DNA N4-methylcytosine (4mC) is an epigenetic modification. The knowledge about the distribution of 4mC is helpful for understanding its biological functions. Although experimental methods have been proposed to detect 4mC sites, they are expensive for performing genome-wide detections. Thus, it is necessary to develop computational methods for predicting 4mC sites. Results In this work, we developed iDNA4mC, the first webserver to identify 4mC sites, in which DNA sequences are encoded with both nucleotide chemical properties and nucleotide frequency. The predictive results of the rigorous jackknife test and cross species test demonstrated that the performance of iDNA4mC is quite promising and holds high potential to become a useful tool for identifying 4mC sites. Availability and implementation The user-friendly web-server, iDNA4mC, is freely accessible at http://lin.uestc.edu.cn/server/iDNA4mC. Contact chenweiimu@gmail.com or hlin@uestc.edu.cn.
Collapse
Affiliation(s)
- Wei Chen
- Department of Physics, School of Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan 063000, China
| | - Hui Yang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Pengmian Feng
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Hui Ding
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
10
|
Wons E, Mruk I, Kaczorowski T. Isospecific adenine DNA methyltransferases show distinct preferences towards DNA substrates. Sci Rep 2018; 8:8243. [PMID: 29844340 PMCID: PMC5974420 DOI: 10.1038/s41598-018-26434-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/09/2018] [Indexed: 11/09/2022] Open
Abstract
Here, we report results on systematic analysis of DNA substrate preferences of three N6-adenine β-class DNA methyltransferases that are part of the type II restriction-modification systems. The studied enzymes were: M.EcoVIII, M.HindIII and M.LlaCI, which although found in phylogenetically distant bacteria (γ-proteobacteria and low-GC Gram-positive bacteria), recognize the same palindromic specific sequence 5′-AAGCTT-3′ and catalyze formation of N6-methyladenine at the first A-residue. As expected overall the enzymes share the most analyzed features, but they show also some distinct differences in substrate recognition. Therefore DNA methylation reactions were carried out not only under standard, but also under relaxed conditions using DMSO or glycerol. We found that all of these enzymes preferred DNA containing a hemimethylated target site, but differ in modification of ssDNA, especially more pronounced for M.EcoVIII under relaxed conditions. In these conditions they also have shown varied preferences toward secondary sites, which differ by one nucleotide from specific sequence. They preferred sequences with substitutions at the 1st (A1 → G/C) and at the 2nd position (A2 → C), while sites with substitutions at the 3rd position (G3 → A/C) were modified less efficiently. Kinetic parameters of the methylation reaction carried out by M.EcoVIII were determined. Methylation efficiency (kcat/Km) of secondary sites was 4.5–10 times lower when compared to the unmethylated specific sequences, whilst efficiency observed for the hemimethylated substrate was almost 4.5 times greater. We also observed a distinct effect of analyzed enzymes on unspecific interaction with DNA phosphate backbone. We concluded that for all three enzymes the most critical is the phosphodiester bond between G3-C4 nucleotides at the center of the target site.
Collapse
Affiliation(s)
- Ewa Wons
- Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Iwona Mruk
- Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Tadeusz Kaczorowski
- Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, Gdansk, 80-308, Poland. .,Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, Gdansk, 80-308, Poland.
| |
Collapse
|
11
|
Morgan RD, Luyten YA, Johnson SA, Clough EM, Clark TA, Roberts RJ. Novel m4C modification in type I restriction-modification systems. Nucleic Acids Res 2016; 44:9413-9425. [PMID: 27580720 PMCID: PMC5100572 DOI: 10.1093/nar/gkw743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/12/2016] [Indexed: 11/12/2022] Open
Abstract
We identify a new subgroup of Type I Restriction-Modification enzymes that modify cytosine in one DNA strand and adenine in the opposite strand for host protection. Recognition specificity has been determined for ten systems using SMRT sequencing and each recognizes a novel DNA sequence motif. Previously characterized Type I systems use two identical copies of a single methyltransferase (MTase) subunit, with one bound at each half site of the specificity (S) subunit to form the MTase. The new m4C-producing Type I systems we describe have two separate yet highly similar MTase subunits that form a heterodimeric M1M2S MTase. The MTase subunits from these systems group into two families, one of which has NPPF in the highly conserved catalytic motif IV and modifies adenine to m6A, and one having an NPPY catalytic motif IV and modifying cytosine to m4C. The high degree of similarity among their cytosine-recognizing components (MTase and S) suggest they have recently evolved, most likely from the far more common m6A Type I systems. Type I enzymes that modify cytosine exclusively were formed by replacing the adenine target recognition domain (TRD) with a cytosine-recognizing TRD. These are the first examples of m4C modification in Type I RM systems.
Collapse
Affiliation(s)
| | - Yvette A Luyten
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | | | - Emily M Clough
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Tyson A Clark
- Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025, USA
| | | |
Collapse
|
12
|
Jurkowska RZ, Jeltsch A. Mechanisms and Biological Roles of DNA Methyltransferases and DNA Methylation: From Past Achievements to Future Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:1-17. [DOI: 10.1007/978-3-319-43624-1_1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Aranda J, Roca M, Tuñón I. Substrate promiscuity in DNA methyltransferase M.PvuII. A mechanistic insight. Org Biomol Chem 2012; 10:5395-400. [PMID: 22699309 DOI: 10.1039/c2ob07021a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
M.PvuII is a DNA methyltransferase from the bacterium Proteus vulgaris that catalyzes methylation of cytosine at the N4 position. This enzyme also displays promiscuous activity catalyzing methylation of adenine at the N6 position. In this work we use QM/MM methods to investigate the reaction mechanism of this promiscuous activity. We found that N6 methylation in M.PvuII takes place by means of a stepwise mechanism in which deprotonation of the exocyclic amino group is followed by the methyl transfer. Deprotonation involves two residues of the active site, Ser53 and Asp96, while methylation takes place directly from the AdoMet cofactor to the target nitrogen atom. The same reaction mechanism was described for cytosine methylation in the same enzyme, while the reversal timing, that is methylation followed by deprotonation, has been described in M.TaqI, an enzyme that catalyzes the N6-adenine DNA methylation from Thermus aquaticus. These mechanistic findings can be useful to understand the evolutionary paths followed by N-methyltransferases.
Collapse
Affiliation(s)
- Juan Aranda
- Departament de Química Física, Universitat de València, València, Spain
| | | | | |
Collapse
|
14
|
Malygin EG, Hattman S. DNA methyltransferases: mechanistic models derived from kinetic analysis. Crit Rev Biochem Mol Biol 2012; 47:97-193. [PMID: 22260147 DOI: 10.3109/10409238.2011.620942] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The sequence-specific transfer of methyl groups from donor S-adenosyl-L-methionine (AdoMet) to certain positions of DNA-adenine or -cytosine residues by DNA methyltransferases (MTases) is a major form of epigenetic modification. It is virtually ubiquitous, except for some notable exceptions. Site-specific methylation can be regarded as a means to increase DNA information capacity and is involved in a large spectrum of biological processes. The importance of these functions necessitates a deeper understanding of the enzymatic mechanism(s) of DNA methylation. DNA MTases fall into one of two general classes; viz. amino-MTases and [C5-cytosine]-MTases. Amino-MTases, common in prokaryotes and lower eukaryotes, catalyze methylation of the exocyclic amino group of adenine ([N6-adenine]-MTase) or cytosine ([N4-cytosine]-MTase). In contrast, [C5-cytosine]-MTases methylate the cyclic carbon-5 atom of cytosine. Characteristics of DNA MTases are highly variable, differing in their affinity to their substrates or reaction products, their kinetic parameters, or other characteristics (order of substrate binding, rate limiting step in the overall reaction). It is not possible to present a unifying account of the published kinetic analyses of DNA methylation because different authors have used different substrate DNAs and/or reaction conditions. Nevertheless, it would be useful to describe those kinetic data and the mechanistic models that have been derived from them. Thus, this review considers in turn studies carried out with the most consistently and extensively investigated [N6-adenine]-, [N4-cytosine]- and [C5-cytosine]-DNA MTases.
Collapse
Affiliation(s)
- Ernst G Malygin
- Institute of Molecular Biology, State Research Center of Virology and Biotechnology Vector, Novosibirsk, Russia
| | | |
Collapse
|
15
|
Kumar A, Saigal K, Malhotra K, Sinha KM, Taneja B. Structural and functional characterization of Rv2966c protein reveals an RsmD-like methyltransferase from Mycobacterium tuberculosis and the role of its N-terminal domain in target recognition. J Biol Chem 2011; 286:19652-61. [PMID: 21474448 PMCID: PMC3103344 DOI: 10.1074/jbc.m110.200428] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 03/24/2011] [Indexed: 11/06/2022] Open
Abstract
Nine of ten methylated nucleotides of Escherichia coli 16 S rRNA are conserved in Mycobacterium tuberculosis. All the 10 different methyltransferases are known in E. coli, whereas only TlyA and GidB have been identified in mycobacteria. Here we have identified Rv2966c of M. tuberculosis as an ortholog of RsmD protein of E. coli. We have shown that rv2966c can complement rsmD-deleted E. coli cells. Recombinant Rv2966c can use 30 S ribosomes purified from rsmD-deleted E. coli as substrate and methylate G966 of 16 S rRNA in vitro. Structure determination of the protein shows the protein to be a two-domain structure with a short hairpin domain at the N terminus and a C-terminal domain with the S-adenosylmethionine-MT-fold. We show that the N-terminal hairpin is a minimalist functional domain that helps Rv2966c in target recognition. Deletion of the N-terminal domain prevents binding to nucleic acid substrates, and the truncated protein fails to carry out the m(2)G966 methylation on 16 S rRNA. The N-terminal domain also binds DNA efficiently, a property that may be utilized under specific conditions of cellular growth.
Collapse
MESH Headings
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Histones/chemistry
- Histones/genetics
- Histones/metabolism
- Methylation
- Mycobacterium tuberculosis/enzymology
- Mycobacterium tuberculosis/genetics
- Protein Structure, Tertiary
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Structure-Activity Relationship
- tRNA Methyltransferases/chemistry
- tRNA Methyltransferases/genetics
- tRNA Methyltransferases/metabolism
Collapse
Affiliation(s)
- Atul Kumar
- From the Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi University Campus, Delhi 110007 and
| | - Kashyap Saigal
- the Institute of Molecular Medicine, 254, Okhla Industrial Estate, Phase III, New Delhi 110020 India
| | - Ketan Malhotra
- the Institute of Molecular Medicine, 254, Okhla Industrial Estate, Phase III, New Delhi 110020 India
| | - Krishna Murari Sinha
- the Institute of Molecular Medicine, 254, Okhla Industrial Estate, Phase III, New Delhi 110020 India
| | - Bhupesh Taneja
- From the Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi University Campus, Delhi 110007 and
| |
Collapse
|
16
|
Defining the plasmid-borne restriction-modification systems of the Lyme disease spirochete Borrelia burgdorferi. J Bacteriol 2010; 193:1161-71. [PMID: 21193609 DOI: 10.1128/jb.01176-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The restriction-modification (R-M) systems of many bacteria present a barrier to the stable introduction of foreign DNA. The Lyme disease spirochete Borrelia burgdorferi has two plasmid-borne putative R-M genes, bbe02 and bbq67, whose presence limits transformation by shuttle vector DNA from Escherichia coli. We show that both the bbe02 and bbq67 loci in recipient B. burgdorferi limit transformation with shuttle vector DNA from E. coli, irrespective of its dam, dcm, or hsd methylation status. However, plasmid DNA purified from B. burgdorferi transformed naïve B. burgdorferi much more efficiently than plasmid DNA from E. coli, particularly when the bbe02 and bbq67 genotypes of the B. burgdorferi DNA source matched those of the recipient. We detected adenine methylation of plasmid DNA prepared from B. burgdorferi that carried bbe02 and bbq67. These results indicate that the bbe02 and bbq67 loci of B. burgdorferi encode distinct R-M enzymes that methylate endogenous DNA and cleave foreign DNA lacking the same sequence-specific modification. Our findings have basic implications for horizontal gene transfer among B. burgdorferi strains with distinct plasmid contents. Further characterization and identification of the nucleotide sequences recognized by BBE02 and BBQ67 will facilitate efficient genetic manipulation of this pathogenic spirochete.
Collapse
|
17
|
Xu F, Mao C, Ding Y, Rui C, Wu L, Shi A, Zhang H, Zhang L, Xu Z. Molecular and enzymatic profiles of mammalian DNA methyltransferases: structures and targets for drugs. Curr Med Chem 2010; 17:4052-71. [PMID: 20939822 PMCID: PMC3003592 DOI: 10.2174/092986710793205372] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 09/20/2010] [Indexed: 12/29/2022]
Abstract
DNA methylation is an epigenetic event involved in a variety array of processes that may be the foundation of genetic phenomena and diseases. DNA methyltransferase is a key enzyme for cytosine methylation in DNA, and can be divided into two functional families (Dnmt1 and Dnmt3) in mammals. All mammalian DNA methyltransferases are encoded by their own single gene, and consisted of catalytic and regulatory regions (except Dnmt2). Via interactions between functional domains in the regulatory or catalytic regions and other adaptors or cofactors, DNA methyltransferases can be localized at selective areas (specific DNA/nucleotide sequence) and linked to specific chromosome status (euchromatin/heterochromatin, various histone modification status). With assistance from UHRF1 and Dnmt3L or other factors in Dnmt1 and Dnmt3a/Dnmt3b, mammalian DNA methyltransferases can be recruited, and then specifically bind to hemimethylated and unmethylated double-stranded DNA sequence to maintain and de novo setup patterns for DNA methylation. Complicated enzymatic steps catalyzed by DNA methyltransferases include methyl group transferred from cofactor Ado-Met to C5 position of the flipped-out cytosine in targeted DNA duplex. In the light of the fact that different DNA methyltransferases are divergent in both structures and functions, and use unique reprogrammed or distorted routines in development of diseases, design of new drugs targeting specific mammalian DNA methyltransferases or their adaptors in the control of key steps in either maintenance or de novo DNA methylation processes will contribute to individually treating diseases related to DNA methyltransferases.
Collapse
Affiliation(s)
- F. Xu
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - C. Mao
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - Y. Ding
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - C. Rui
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - L. Wu
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - A. Shi
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - H. Zhang
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - L. Zhang
- Center for Perinatal Biology, Loma Linda University School of Medicine, CA 92350, USA
| | - Z. Xu
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
- Center for Perinatal Biology, Loma Linda University School of Medicine, CA 92350, USA
| |
Collapse
|
18
|
Lenz T, Bonnist EYM, Pljevaljcić G, Neely RK, Dryden DTF, Scheidig AJ, Jones AC, Weinhold E. 2-Aminopurine Flipped into the Active Site of the Adenine-Specific DNA Methyltransferase M.TaqI: Crystal Structures and Time-Resolved Fluorescence. J Am Chem Soc 2007; 129:6240-8. [PMID: 17455934 DOI: 10.1021/ja069366n] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the crystal structure of the DNA adenine-N6 methyltransferase, M.TaqI, complexed with DNA, showing the fluorescent adenine analog, 2-aminopurine, flipped out of the DNA helix and occupying virtually the same position in the active site as the natural target adenine. Time-resolved fluorescence spectroscopy of the crystalline complex faithfully reports this state: base flipping is accompanied by the loss of the very short ( approximately 50 ps) lifetime component associated with fully base-stacked 2-aminopurine in DNA, and 2-aminopurine is subject to considerable quenching by pi-stacking interactions with Tyr108 in the catalytic motif IV (NPPY). This proves 2-aminopurine to be an excellent probe for studying base flipping by M.TaqI and suggests similar quenching in the active sites of DNA and RNA adenine-N6 as well as DNA cytosine-N4 methyltransferases sharing the conserved motif IV. In solution, the same distinctive fluorescence response confirms complete destacking from DNA and is also observed when the proposed key residue for base flipping by M.TaqI, the target base partner thymine, is substituted by an abasic site analog. The corresponding cocrystal structure shows 2-aminopurine in the active site of M.TaqI, demonstrating that the partner thymine is not essential for base flipping. However, in this structure, a shift of the 3' neighbor of the target base into the vacancy left after base flipping is observed, apparently replicating a stabilizing role of the missing partner thymine. Time-resolved fluorescence and acrylamide quenching measurements of M.TaqI complexes in solution provide evidence for an alternative binding site for the extra-helical target base within M.TaqI and suggest that the partner thymine assists in delivering the target base into the active site.
Collapse
Affiliation(s)
- Thomas Lenz
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Jeltsch A, Nellen W, Lyko F. Two substrates are better than one: dual specificities for Dnmt2 methyltransferases. Trends Biochem Sci 2006; 31:306-8. [PMID: 16679017 DOI: 10.1016/j.tibs.2006.04.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 03/13/2006] [Accepted: 04/24/2006] [Indexed: 12/31/2022]
Abstract
Dnmt2 enzymes have been widely conserved during evolution and contain all of the signature motifs of DNA (cytosine-5)-methyltransferases; however, the DNA methyltransferase activity of these proteins is comparatively weak and their biochemical and functional properties remain enigmatic. Recent evidence now shows that Dnmt2 has a novel tRNA methyltransferase activity, raising the possibility that the biological roles of these proteins might be broader than previously thought. This finding has important implications for understanding the evolutionary relationships among these enzymes.
Collapse
Affiliation(s)
- Albert Jeltsch
- School of Engineering and Science, International University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | | |
Collapse
|
20
|
Affiliation(s)
- Patrick J O'Brien
- Department of Biological Chemistry, University of Michigan, Ann Arbor, 48109-0606, USA.
| |
Collapse
|
21
|
Abstract
DNA in plants is highly methylated, containing 5-methylcytosine (m5C) and N6-methyladenine (m6A); m5C is located mainly in symmetrical CG and CNG sequences but it may occur also in other non-symmetrical contexts. m6A but not m5C was found in plant mitochondrial DNA. DNA methylation in plants is species-, tissue-, organelle- and age-specific. It is controlled by phytohormones and changes on seed germination, flowering and under the influence of various pathogens (viral, bacterial, fungal). DNA methylation controls plant growth and development, with particular involvement in regulation of gene expression and DNA replication. DNA replication is accompanied by the appearance of under-methylated, newly formed DNA strands including Okazaki fragments; asymmetry of strand DNA methylation disappears until the end of the cell cycle. A model for regulation of DNA replication by methylation is suggested. Cytosine DNA methylation in plants is more rich and diverse compared with animals. It is carried out by the families of specific enzymes that belong to at least three classes of DNA methyltransferases. Open reading frames (ORF) for adenine DNA methyltransferases are found in plant and animal genomes, and a first eukaryotic (plant) adenine DNA methyltransferase (wadmtase) is described; the enzyme seems to be involved in regulation of the mitochondria replication. Like in animals, DNA methylation in plants is closely associated with histone modifications and it affects binding of specific proteins to DNA and formation of respective transcription complexes in chromatin. The same gene (DRM2) in Arabidopsis thaliana is methylated both at cytosine and adenine residues; thus, at least two different, and probably interdependent, systems of DNA modification are present in plants. Plants seem to have a restriction-modification (R-M) system. RNA-directed DNA methylation has been observed in plants; it involves de novo methylation of almost all cytosine residues in a region of siRNA-DNA sequence identity; therefore, it is mainly associated with CNG and non-symmetrical methylations (rare in animals) in coding and promoter regions of silenced genes. Cytoplasmic viral RNA can affect methylation of homologous nuclear sequences and it maybe one of the feedback mechanisms between the cytoplasm and the nucleus to control gene expression.
Collapse
Affiliation(s)
- B F Vanyushin
- Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Russia.
| |
Collapse
|
22
|
|
23
|
Abstract
DNA methyltransferases catalyze the transfer of a methyl group from S-adenosyl-L-methionine to cytosine or adenine bases in DNA. These enzymes challenge the Watson/Crick dogma in two instances: 1) They attach inheritable information to the DNA that is not encoded in the nucleotide sequence. This so-called epigenetic information has many important biological functions. In prokaryotes, DNA methylation is used to coordinate DNA replication and the cell cycle, to direct postreplicative mismatch repair, and to distinguish self and nonself DNA. In eukaryotes, DNA methylation contributes to the control of gene expression, the protection of the genome against selfish DNA, maintenance of genome integrity, parental imprinting, X-chromosome inactivation in mammals, and regulation of development. 2) The enzymatic mechanism of DNA methyltransferases is unusual, because these enzymes flip their target base out of the DNA helix and, thereby, locally disrupt the B-DNA helix. This review describes the biological functions of DNA methylation in bacteria, fungi, plants, and mammals. In addition, the structures and mechanisms of the DNA methyltransferases, which enable them to specifically recognize their DNA targets and to induce such large conformational changes of the DNA, are discussed.
Collapse
Affiliation(s)
- Albert Jeltsch
- Institut für Biochemie, FB 8, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, 35392 Giessen, Germany.
| |
Collapse
|
24
|
Abstract
DNA methyltransferases catalyze the transfer of a methyl group from S-adenosyl-L-methionine to cytosine or adenine bases in DNA. These enzymes challenge the Watson/Crick dogma in two instances: 1) They attach inheritable information to the DNA that is not encoded in the nucleotide sequence. This so-called epigenetic information has many important biological functions. In prokaryotes, DNA methylation is used to coordinate DNA replication and the cell cycle, to direct postreplicative mismatch repair, and to distinguish self and nonself DNA. In eukaryotes, DNA methylation contributes to the control of gene expression, the protection of the genome against selfish DNA, maintenance of genome integrity, parental imprinting, X-chromosome inactivation in mammals, and regulation of development. 2) The enzymatic mechanism of DNA methyltransferases is unusual, because these enzymes flip their target base out of the DNA helix and, thereby, locally disrupt the B-DNA helix. This review describes the biological functions of DNA methylation in bacteria, fungi, plants, and mammals. In addition, the structures and mechanisms of the DNA methyltransferases, which enable them to specifically recognize their DNA targets and to induce such large conformational changes of the DNA, are discussed.
Collapse
Affiliation(s)
- Albert Jeltsch
- Institut für Biochemie, FB 8, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, 35392 Giessen, Germany.
| |
Collapse
|
25
|
Abstract
DNA from Aspergillus sp. has been reported not to contain 5-methylcytosine. However, it has been found that Aspergillus nidulans responds to 5-azacytidine, a drug that is a strong inhibitor of DNA methyltransferases. Therefore, we have re-examined the occurrence of 5-methylcytosine in DNA from Aspergillus flavus by using a highly sensitive and specific method for detection of modified bases in genomic DNA comprising high-performance liquid chromatography separation of nucleosides, labeling of the nucleoside with deoxynucleoside kinase and two-dimensional thin-layer chromatography. Our results show that 5-methylcytosine is present in DNA from A. flavus. We estimate the relative amounts of 5-methylcytosine to cytosine to be approximately 1/400.
Collapse
Affiliation(s)
- H Gowher
- Institut für Biochemie, FB 8, Heinrich-Buff-Ring 58, 3392 Giessen, Germany
| | | | | |
Collapse
|
26
|
Roth M, Jeltsch A. Changing the target base specificity of the EcoRV DNA methyltransferase by rational de novo protein-design. Nucleic Acids Res 2001; 29:3137-44. [PMID: 11470870 PMCID: PMC55820 DOI: 10.1093/nar/29.15.3137] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The EcoRV DNA-(adenine-N(6))-methyltransferase (M.EcoRV) specifically modifies the first adenine residue within GATATC sequences. During catalysis, the enzyme flips its target base out of the DNA helix and binds it into a target base binding pocket which is formed in part by Lys16 and Tyr196. A cytosine residue is accepted by wild-type M.EcoRV as a substrate at a 31-fold reduced efficiency with respect to the k(cat)/K(M) values if it is located in a CT mismatch substrate (GCTATC/GATATC). Cytosine residues positioned in a CG base pair (GCTATC/GATAGC) are modified at much more reduced rates, because flipping out the target base is much more difficult in this case. We intended to change the target base specificity of M.EcoRV from adenine-N(6) to cytosine-N(4). To this end we generated, purified and characterized 15 variants of the enzyme, containing single, double and triple amino acid exchanges following different design approaches. One concept was to reduce the size of the target base binding pocket by site-directed mutagenesis. The K16R variant showed an altered specificity, with a 22-fold preference for cytosine as the target base in a mismatch substrate. This corresponds to a 680-fold change in specificity, which was accompanied by only a small loss in catalytic activity with the cytosine substrate. The K16R/Y196W variant no longer methylated adenine residues at all and its activity towards cytosine was reduced only 17-fold. Therefore, we have changed the target base specificity of M.EcoRV from adenine to cytosine by rational protein design. Because there are no natural paragons for the variants described here, a change of the target base specificity of a DNA interacting enzyme was possible by rational de novo design of its active site.
Collapse
Affiliation(s)
- M Roth
- Institut für Biochemie, Fachbereich 8, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, 35392 Giessen, Germany
| | | |
Collapse
|