1
|
Etlin S, Rose J, Bielski L, Walter C, Kleinman AS, Mason CE. The human microbiome in space: parallels between Earth-based dysbiosis, implications for long-duration spaceflight, and possible mitigation strategies. Clin Microbiol Rev 2024; 37:e0016322. [PMID: 39136453 PMCID: PMC11391694 DOI: 10.1128/cmr.00163-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
SUMMARYThe human microbiota encompasses the diverse communities of microorganisms that reside in, on, and around various parts of the human body, such as the skin, nasal passages, and gastrointestinal tract. Although research is ongoing, it is well established that the microbiota exert a substantial influence on the body through the production and modification of metabolites and small molecules. Disruptions in the composition of the microbiota-dysbiosis-have also been linked to various negative health outcomes. As humans embark upon longer-duration space missions, it is important to understand how the conditions of space travel impact the microbiota and, consequently, astronaut health. This article will first characterize the main taxa of the human gut microbiota and their associated metabolites, before discussing potential dysbiosis and negative health consequences. It will also detail the microbial changes observed in astronauts during spaceflight, focusing on gut microbiota composition and pathogenic virulence and survival. Analysis will then turn to how astronaut health may be protected from adverse microbial changes via diet, exercise, and antibiotics before concluding with a discussion of the microbiota of spacecraft and microbial culturing methods in space. The implications of this review are critical, particularly with NASA's ongoing implementation of the Moon to Mars Architecture, which will include weeks or months of living in space and new habitats.
Collapse
Affiliation(s)
- Sofia Etlin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Julianna Rose
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Luca Bielski
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
| | - Claire Walter
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Ashley S Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- BioAstra Inc., New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, New York, USA
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
2
|
Wiehlmann L, Klockgether J, Hammerbacher AS, Salunkhe P, Horatzek S, Munder A, Peilert JF, Gulbins E, Eberl L, Tümmler B. A VirB4 ATPase of the mobile accessory genome orchestrates core genome-encoded features of physiology, metabolism, and virulence of Pseudomonas aeruginosa TBCF10839. Front Cell Infect Microbiol 2023; 13:1234420. [PMID: 37577372 PMCID: PMC10413270 DOI: 10.3389/fcimb.2023.1234420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Pseudomonas aeruginosa TBCF10839 is a highly virulent strain that can persist and replicate in human neutrophils. Screening of a signature-tagged mutagenesis (STM) TBCF10839 transposon library in phagocytosis tests identified a mutant that carried the transposon in the VirB4 homolog 5PG21 of an integrative and conjugative element (ICE)-associated type IV secretion system of the pKLC102 subtype. 5P21 TBCF10839 insertion mutants were deficient in metabolic versatility, secretion, quorum sensing, and virulence. The mutants were efficiently killed in phagocytosis tests in vitro and were avirulent in an acute murine airway infection model in vivo. The inactivation of 5PG21 silenced the rhl, las, and pqs operons and the gene expression for the synthesis of hydrogen cyanide, the antimetabolite l-2-amino-4-methoxy-trans-3-butenoic acid, and the H2- and H3-type VI secretion systems and their associated effectors. The mutants were impaired in the utilization of carbon sources and stored compounds that are not funneled into intermediary metabolism. This showcase demonstrates that a single gene of the mobile accessory genome can become an essential element to operate the core genome-encoded features of metabolism and virulence.
Collapse
Affiliation(s)
- Lutz Wiehlmann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Jens Klockgether
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Anna-Silke Hammerbacher
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Prabhakar Salunkhe
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Sonja Horatzek
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Antje Munder
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover, Germany
| | | | - Erich Gulbins
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover, Germany
| |
Collapse
|
3
|
Yan X, Gu C, Yu Z, Ding L, He M, Xiao W, Zhao M, Qing Y, He L. Comprehensive analysis of transcriptome and metabolome analysis reveal new targets of Glaesserella parasuis glucose-specific enzyme IIBC (PtsG). Microb Pathog 2022; 172:105785. [PMID: 36150554 DOI: 10.1016/j.micpath.2022.105785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022]
Abstract
The ptsG (hpIIBCGlc) gene, belonging to the glucose-specific phosphotransferase system, encodes the bacterial glucose-specific enzyme IIBC. In this study, the effects of a deletion of the ptsG gene were investigated by metabolome and transcriptome analyses. At the transcriptional level, we identified 970 differentially expressed genes between ΔptsG and sc1401 (Padj<0.05) and 2072 co-expressed genes. Among these genes, those involved in methane metabolism, amino sugar and nucleotide sugar metabolism, starch and sucrose metabolism, pyruvate metabolism, phosphotransferase system (PTS), biotin metabolism, Two-component system and Terpenoid backbone biosynthesis showed significant changes in the ΔptsG mutant strain. Metabolome analysis revealed that a total of 310 metabolites were identified, including 20 different metabolites (p < 0.05). Among them, 15 metabolites were upregulated and 5 were downregulated in ΔptsG mutant strain. Statistical analysis revealed there were 115 individual metabolites having correlation, of which 89 were positive and 26 negative. These metabolites include amino acids, phosphates, amines, esters, nucleotides, benzoic acid and adenosine, among which amino acids and phosphate metabolites dominate. However, not all of these changes were attributable to changes in mRNA levels and must also be caused by post-transcriptional regulatory processes. The knowledge gained from this lays the foundation for further study on the role of ptsG in the pathogenic process of Glaesserella parasuis (G.parasuis).
Collapse
Affiliation(s)
- Xuefeng Yan
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Congwei Gu
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China; Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Zehui Yu
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China; Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Lingqiang Ding
- School of Life Science and Engineering, Hexi University, Zhangye, China
| | - Manli He
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China; Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Wudian Xiao
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China; Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Mingde Zhao
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China; Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Yunfeng Qing
- Animal Disease Prevention and Control Center of Zhaohua District, Guangyuan, China
| | - Lvqin He
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China; Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China.
| |
Collapse
|
4
|
Li Z, Meng T, Hang W, Cao X, Ni H, Shi Y, Li Q, Xiong Y, He N. Regulation of glucose and glycerol for production of docosahexaenoic acid in Schizochytrium limacinum SR21 with metabolomics analysis. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Biochemical elucidation of citrate accumulation in Synechocystis sp. PCC 6803 via kinetic analysis of aconitase. Sci Rep 2021; 11:17131. [PMID: 34429477 PMCID: PMC8385029 DOI: 10.1038/s41598-021-96432-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/04/2021] [Indexed: 12/03/2022] Open
Abstract
A unicellular cyanobacterium Synechocystis sp. PCC 6803 possesses a unique tricarboxylic acid (TCA) cycle, wherein the intracellular citrate levels are approximately 1.5–10 times higher than the levels of other TCA cycle metabolite. Aconitase catalyses the reversible isomerisation of citrate and isocitrate. Herein, we biochemically analysed Synechocystis sp. PCC 6803 aconitase (SyAcnB), using citrate and isocitrate as the substrates. We observed that the activity of SyAcnB for citrate was highest at pH 7.7 and 45 °C and for isocitrate at pH 8.0 and 53 °C. The Km value of SyAcnB for citrate was higher than that for isocitrate under the same conditions. The Km value of SyAcnB for isocitrate was 3.6-fold higher than the reported Km values of isocitrate dehydrogenase for isocitrate. Therefore, we suggest that citrate accumulation depends on the enzyme kinetics of SyAcnB, and 2-oxoglutarate production depends on the chemical equilibrium in this cyanobacterium.
Collapse
|
6
|
Chopra B, Dhingra AK. Natural products: A lead for drug discovery and development. Phytother Res 2021; 35:4660-4702. [PMID: 33847440 DOI: 10.1002/ptr.7099] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 12/29/2022]
Abstract
Natural products are used since ancient times in folklore for the treatment of various ailments. Plant-derived products have been recognized for many years as a source of therapeutic agents and structural diversity. A literature survey has been carried out to determine the utility of natural molecules and their modified analogs or derivatives as pharmacological active entities. This review presents a study on the importance of natural products in terms of drug discovery and development. It describes how the natural components can be utilized after small modifications in new perspectives. Various new modifications in structure offer a unique opportunity to establish a new molecular entity with better pharmacological potential. It was concluded that in this current era, new attempts are taken to utilize the compounds derived from natural sources as novel drug candidates, with a focus to find and discover new effective molecules that were referred to as "new entities of natural product drug discovery."
Collapse
Affiliation(s)
- Bhawna Chopra
- Department of Pharmaceutical Chemistry, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| | - Ashwani Kumar Dhingra
- Department of Pharmaceutical Chemistry, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| |
Collapse
|
7
|
Functions of Enyolreductase ( ER) Domains of PKS Cluster in Lipid Synthesis and Enhancement of PUFAs Accumulation in Schizochytrium limacinum SR21 Using Triclosan as a Regulator of ER. Microorganisms 2020; 8:microorganisms8020300. [PMID: 32098234 PMCID: PMC7074904 DOI: 10.3390/microorganisms8020300] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/09/2020] [Accepted: 02/19/2020] [Indexed: 01/10/2023] Open
Abstract
The polyketide synthase (PKS) cluster genes are supposed to synthesize polyunsaturated fatty acids (PUFAs) in S. limacinum. In this study, two enyolreductase (ER) genes located on PKS cluster were knocked out through homologous recombination to explore their functions. The knock-out of OrfB-ER (located on OrfB subunit) decreased lipid content and had obvious decrease on PUFAs content, indicating OrfB-ER domain played a vital role on PUFAs synthesis; the knock-out of OrfC-ER (located on OrfC subunit) decreased SFAs content and increased total lipid content, indicating OrfC-ER domain was likely to be related with SFAs synthesis, and lipid production could be improved by down-regulating OrfC-ER domain expression. Therefore, the addition of triclosan as a reported regulator of ER domain induced the increase of PUFAs production by 51.74% and lipids yield by 47.63%. Metabolic analysis indicated triclosan played its role through inhibiting the expression of OrfC-ER to reduce the feedback inhibition of SFAs and further to enhance NADPH synthesis for lipid production, and by weakening mevalonate pathway and tricarboxylic acid (TCA) cycle to shift precursors for lipid and PUFAs synthesis. This research illuminates functions of two ER domains in S. limacinum and provides a potential targets for improving lipid production.
Collapse
|
8
|
Oroz‐Guinea I, Zorn K, Bornscheuer UT. Enhancement of Lipase CAL‐A Selectivity by Protein Engineering for the Hydrolysis of Erucic Acid from
Crambe
Oil. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Isabel Oroz‐Guinea
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix‐Hausdorff‐Str. 417487 GreifswaldGermany
| | - Katja Zorn
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix‐Hausdorff‐Str. 417487 GreifswaldGermany
| | - Uwe T. Bornscheuer
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix‐Hausdorff‐Str. 417487 GreifswaldGermany
| |
Collapse
|
9
|
Zorn K, Oroz‐Guinea I, Brundiek H, Dörr M, Bornscheuer UT. Alteration of Chain Length Selectivity of Candida antarctica Lipase A by Semi-Rational Design for the Enrichment of Erucic and Gondoic Fatty Acids. Adv Synth Catal 2018; 360:4115-4131. [PMID: 30555288 PMCID: PMC6283244 DOI: 10.1002/adsc.201800889] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 11/07/2022]
Abstract
Biotechnological strategies using renewable materials as starting substrates are a promising alternative to traditional oleochemical processes for the isolation of different fatty acids. Among them, long chain mono-unsaturated fatty acids are especially interesting in industrial lipid modification, since they are precursors of several economically relevant products, including detergents, plastics and lubricants. Therefore, the aim of this study was to develop an enzymatic method in order to increase the percentage of long chain mono-unsaturated fatty acids from Camelina and Crambe oil ethyl ester derivatives, by using selective lipases. Specifically, the focus was on the enrichment of gondoic (C20:1 cisΔ11) and erucic acid (C22:1 cisΔ13) from Camelina and Crambe oil derivatives, respectively. The pursuit of this goal entailed several steps, including: (i) the choice of a suitable lipase scaffold to serve as a protein engineering template (Candida antarctica lipase A); (ii) the identification of potential amino acid targets to disrupt the binding tunnel at the adequate location; (iii) the design, creation and high-throughput screening of lipase mutant libraries; (iv) the study of the selectivity towards different chain length p-nitrophenyl fatty acid esters of the best hits found, as well as the analysis of the contribution of each amino acid change and the outcome of combining several of the aforementioned residue alterations and, finally, (v) the selection and application of the most promising candidates for the fatty acid enrichment biocatalysis. As a result, enrichment of C22:1 from Crambe ethyl esters was achieved either, in the free fatty acid fraction (wt, 78%) or in the esterified fraction (variants V1, 77%; V9, 78% and V19, 74%). Concerning the enrichment of C20:1 when Camelina oil ethyl esters were used as substrate, the best variant was the single mutant V290W, which doubled its content in the esterified fraction from approximately 15% to 34%. A moderately lower increase was achieved by V9 and its two derived triple mutant variants V19 and V20 (27%).
Collapse
Affiliation(s)
- Katja Zorn
- University of Greifswald, Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Isabel Oroz‐Guinea
- University of Greifswald, Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisFelix-Hausdorff-Str. 417487GreifswaldGermany
| | | | - Mark Dörr
- University of Greifswald, Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Uwe T. Bornscheuer
- University of Greifswald, Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisFelix-Hausdorff-Str. 417487GreifswaldGermany
| |
Collapse
|
10
|
Geng L, Chen S, Sun X, Hu X, Ji X, Huang H, Ren L. Fermentation performance and metabolomic analysis of an engineered high-yield PUFA-producing strain of Schizochytrium sp. Bioprocess Biosyst Eng 2018; 42:71-81. [PMID: 30267145 DOI: 10.1007/s00449-018-2015-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
Abstract
The ω-3/long-chain polyunsaturated fatty acids (LC-PUFAs) play an important role in human health, but they cannot be synthesized in sufficient amounts by the human body. In a previous study, we obtained an engineered Schizochytrium sp. strain (HX-RS) by exchanging the acyltransferase (AT) gene, and it was able to co-produce docosahexaenoic acid and eicosapentaenoic acid. To investigate the mechanism underlying the increase of PUFA content in HX-RS, the discrepancies of fermentation performance, key enzyme activities and intracellular metabolites between HX-RS and its wild-type parent strain (WTS) were analyzed via fed-batch fermentation in 5-L bioreactors. The results showed that the cell dry weight (CDW) of HX-RS was higher than that of the WTS. Metabolomics combined with multivariate analysis showed that 4-aminobutyric acid, proline and glutamine are potential biomarkers associated with cell growth and lipid accumulation of HX-RS. Additionally, the shift of metabolic flux including a decrease of glyceraldehyde-3-phosphate content, high flux from pyruvate to acetyl-CoA, and a highly active glycolysis pathway were also found to be closely related to the high PUFA yield of the engineered strain. These findings provide new insights into the effects of exogenous AT gene expression on cell proliferation and fatty acid metabolism.
Collapse
Affiliation(s)
- Lingjun Geng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Shenglan Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xiaoman Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xuechao Hu
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xiaojun Ji
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, China.,School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing, 210009, People's Republic of China
| | - Lujing Ren
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, China. .,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
11
|
Li Z, Meng T, Ling X, Li J, Zheng C, Shi Y, Chen Z, Li Z, Li Q, Lu Y, He N. Overexpression of Malonyl-CoA: ACP Transacylase in Schizochytrium sp. to Improve Polyunsaturated Fatty Acid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5382-5391. [PMID: 29722541 DOI: 10.1021/acs.jafc.8b01026] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) have been widely applied in the food and medical industry. In this study, malonyl-CoA: ACP transacylase (MAT) was overexpressed through homologous recombination to improve PUFA production in Schizochytrium. The results showed that the lipid and PUFA concentration were increased by 10.1 and 24.5% with MAT overexpression, respectively. Metabolomics analysis revealed that the intracellular tricarboxylic acid cycle was weakened and glucose absorption was accelerated in the engineered strain. In the mevalonate pathway, intracellular carotene content was decreased, and the carbon flux was then redirected toward PUFA synthesis. Furthermore, a glucose fed-batch fermentation was finally performed with the engineered Schizochytrium. The total lipid yield was further increased to 110.5 g/L, 39.6% higher than the wild strain. Docosahexaenoic acid and eicosapentaenoic acid yield were enhanced to 47.39 g/L and 1.65 g/L with an increase of 81.5 and 172.5%, respectively. This study provided an effective metabolic engineering strategy for industrial PUFA production.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Tong Meng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Xueping Ling
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Jun Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Chuqiang Zheng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Yanyan Shi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Zhen Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Zhenqi Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- College of Food and Biological Engineering , Jimei University , Xiamen , P. R. China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| |
Collapse
|
12
|
Obitte NC, Zorn K, Oroz‐Guinea I, Bornscheuer UT, Klein S. Enzymatically Modified Shea Butter and Palm Kernel Oil as Potential Lipid Drug Delivery Matrices. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nicholas C. Obitte
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, Greifswald UniversityFelix‐Hausdorff‐Straße 317487 GreifswaldGermany
- Department of Pharmaceutical Technology & Industrial Pharmacy, University of NigeriaNsukka Road410001 NsukkaNigeria
| | - Katja Zorn
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald UniversityFelix‐Hausdorff‐Str. 417487 GreifswaldGermany
| | - Isabel Oroz‐Guinea
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald UniversityFelix‐Hausdorff‐Str. 417487 GreifswaldGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald UniversityFelix‐Hausdorff‐Str. 417487 GreifswaldGermany
| | - Sandra Klein
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, Greifswald UniversityFelix‐Hausdorff‐Straße 317487 GreifswaldGermany
| |
Collapse
|
13
|
Thomson NM, Shirai T, Chiapello M, Kondo A, Mukherjee KJ, Sivaniah E, Numata K, Summers DK. Efficient 3-Hydroxybutyrate Production by QuiescentEscherichia coliMicrobial Cell Factories is Facilitated by Indole-Induced Proteomic and Metabolomic Changes. Biotechnol J 2018; 13:e1700571. [DOI: 10.1002/biot.201700571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/09/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Nicholas M. Thomson
- Enzyme Research Team; RIKEN Centre for Sustainable Resource Science; Wako-shi 351-0198 Japan
- Department of Genetics; University of Cambridge; Cambridge CB2 3EH UK
| | - Tomokazu Shirai
- Cell Factory Research Team; RIKEN Centre for Sustainable Resource Science; Yokohama 230-0045 Japan
| | - Marco Chiapello
- Cambridge Centre for Proteomics; University of Cambridge; Cambridge CB2 1QR UK
| | - Akihiko Kondo
- Cell Factory Research Team; RIKEN Centre for Sustainable Resource Science; Yokohama 230-0045 Japan
| | | | - Easan Sivaniah
- Institute for Integrated Cell-Material Sciences (iCeMS); Kyoto University; Kyoto 606-8501 Japan
| | - Keiji Numata
- Enzyme Research Team; RIKEN Centre for Sustainable Resource Science; Wako-shi 351-0198 Japan
| | - David K. Summers
- Department of Genetics; University of Cambridge; Cambridge CB2 3EH UK
| |
Collapse
|
14
|
Benzo[a]pyrene-induced metabolic shift from glycolysis to pentose phosphate pathway in the human bladder cancer cell line RT4. Sci Rep 2017; 7:9773. [PMID: 28851999 PMCID: PMC5575001 DOI: 10.1038/s41598-017-09936-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 08/01/2017] [Indexed: 12/16/2022] Open
Abstract
Benzo[a]pyrene (B[a]P), a well-known polyaromatic hydrocarbon, is known for its lung carcinogenicity, however, its role in bladder cancer development is still discussed. Comparative two-dimensional blue native SDS-PAGE analysis of protein complexes isolated from subcellular fractions of 0.5 µM B[a]P-exposed cells indicated a differential regulation of proteins involved in carbohydrate, fatty acid, and nucleotide metabolism, suggesting a possible metabolic flux redistribution. It appeared that B[a]P exposure led to a repression of enzymes (fructose-bisphosphate aldolase A, glucose-6-phosphate isomerase, lactate dehydrogenase) involved in glycolysis, and an up-regulation of proteins (glucose-6-phosphate 1-dehydrogenase, 6-phosphogluconolactonase) catalyzing the pentose phosphate pathway and one carbon metabolism (10-formyltetrahydrofolate dehydrogenase, bifunctional purine biosynthesis protein). Untargeted metabolomics further supported the proteomic data, a lower concentration of glycolytic metabolite was observed as compared to glutamine, xylulose and fatty acids. The analysis of the glutathione and NADPH/NADP+ content of the cells revealed a significant increase of these cofactors. Concomitantly, we did not observe any detectable increase in the production of ROS. With the present work, we shed light on an early phase of the metabolic stress response in which the urothelial cells are capable of counteracting oxidative stress by redirecting the metabolic flux from glycolysis to pentose phosphate pathway.
Collapse
|
15
|
Staphylococcus aureus Infection Reduces Nutrition Uptake and Nucleotide Biosynthesis in a Human Airway Epithelial Cell Line. Metabolites 2016; 6:metabo6040041. [PMID: 27834866 PMCID: PMC5192447 DOI: 10.3390/metabo6040041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 11/16/2022] Open
Abstract
The Gram positive opportunistic human pathogen Staphylococcus aureus induces a variety of diseases including pneumonia. S. aureus is the second most isolated pathogen in cystic fibrosis patients and accounts for a large proportion of nosocomial pneumonia. Inside the lung, the human airway epithelium is the first line in defence with regard to microbial recognition and clearance as well as regulation of the immune response. The metabolic host response is, however, yet unknown. To address the question of whether the infection alters the metabolome and metabolic activity of airway epithelial cells, we used a metabolomics approach. The nutrition uptake by the human airway epithelial cell line A549 was monitored over time by proton magnetic resonance spectroscopy (1H-NMR) and the intracellular metabolic fingerprints were investigated by gas chromatography and high performance liquid chromatography (GC-MS) and (HPLC-MS). To test the metabolic activity of the host cells, glutamine analogues and labelled precursors were applied after the infection. We found that A549 cells restrict uptake of essential nutrients from the medium after S. aureus infection. Moreover, the infection led to a shutdown of the purine and pyrimidine synthesis in the A549 host cell, whereas other metabolic routes such as the hexosamine biosynthesis pathway remained active. In summary, our data show that the infection with S. aureus negatively affects growth, alters the metabolic composition and specifically impacts the de novo nucleotide biosynthesis in this human airway epithelial cell model.
Collapse
|
16
|
Okon E, Dethlefsen S, Pelnikevich A, Barneveld AV, Munder A, Tümmler B. Key role of an ADP - ribose - dependent transcriptional regulator of NAD metabolism for fitness and virulence of Pseudomonas aeruginosa. Int J Med Microbiol 2016; 307:83-94. [PMID: 27865623 DOI: 10.1016/j.ijmm.2016.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 08/31/2016] [Accepted: 09/25/2016] [Indexed: 10/20/2022] Open
Abstract
NAD is an essential co-factor of redox reactions and metabolic conversions of NAD-dependent enzymes. NAD biosynthesis in the opportunistic pathogen Pseudomonas aeruginosa has yet not been experimentally explored. The in silico search for orthologs in the P. aeruginosa PAO1 genome identified the operon pncA - pncB1-nadE (PA4918-PA4920) to encode the nicotinamidase, nicotinate phosporibosyltransferase and Nad synthase of salvage pathway I. The functional role of the preceding genes PA4917 and PA4916 was resolved by the characterization of recombinant protein. PA4917 turned out to encode the nicotinate mononucleotide adenylyltransferase NadD2 and PA4916 was determined to encode the transcriptional repressor NrtR that binds to an intergenic sequence between nadD2 and pncA. Complex formation between the catalytically inactive Nudix protein NrtR and its DNA binding site was suppressed by the antirepressor ADP-ribose. NrtR plasposon mutagenesis abrogated virulence of P. aeruginosa TBCF10839 in a murine acute airway infection model and constrained its metabolite profile. When grown together with other isogenic plasposon mutants, the nrtR knock-out was most compromised in competitive fitness to persist in nutrient-rich medium in vitro or murine airways in vivo. This example demonstrates how tightly metabolism and virulence can be intertwined by key elements of metabolic control.
Collapse
Affiliation(s)
- Elza Okon
- Klinische Forschergruppe, OE 6710, Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Sarah Dethlefsen
- Klinische Forschergruppe, OE 6710, Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Anna Pelnikevich
- Klinische Forschergruppe, OE 6710, Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Andrea van Barneveld
- Klinische Forschergruppe, OE 6710, Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Antje Munder
- Klinische Forschergruppe, OE 6710, Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Burkhard Tümmler
- Klinische Forschergruppe, OE 6710, Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany.
| |
Collapse
|
17
|
Johanningsmeier SD, Harris GK, Klevorn CM. Metabolomic Technologies for Improving the Quality of Food: Practice and Promise. Annu Rev Food Sci Technol 2016; 7:413-38. [DOI: 10.1146/annurev-food-022814-015721] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Suzanne D. Johanningsmeier
- USDA-ARS, SEA Food Science Research Unit, North Carolina State University, Raleigh, North Carolina, 27695;
| | - G. Keith Harris
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695-7624; ,
| | - Claire M. Klevorn
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695-7624; ,
| |
Collapse
|
18
|
Johanningsmeier SD, McFeeters RF. Metabolic footprinting of Lactobacillus buchneri strain LA1147 during anaerobic spoilage of fermented cucumbers. Int J Food Microbiol 2015; 215:40-8. [DOI: 10.1016/j.ijfoodmicro.2015.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 05/15/2015] [Accepted: 08/08/2015] [Indexed: 10/23/2022]
|
19
|
Cordes T, Michelucci A, Hiller K. Itaconic Acid: The Surprising Role of an Industrial Compound as a Mammalian Antimicrobial Metabolite. Annu Rev Nutr 2015; 35:451-73. [PMID: 25974697 DOI: 10.1146/annurev-nutr-071714-034243] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Itaconic acid is well known as a precursor for polymer synthesis and has been involved in industrial processes for decades. In a recent surprising discovery, itaconic acid was found to play a role as an immune-supportive metabolite in mammalian immune cells, where it is synthesized as an antimicrobial compound from the citric acid cycle intermediate cis-aconitic acid. Although the immune-responsive gene 1 protein (IRG1) has been associated to immune response without a mechanistic function, the critical link to itaconic acid production through an enzymatic function of this protein was only recently revealed. In this review, we highlight the history of itaconic acid as an industrial and antimicrobial compound, starting with its biotechnological synthesis and ending with its antimicrobial function in mammalian immune cells.
Collapse
Affiliation(s)
- Thekla Cordes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-Belval, Luxembourg; ,
| | | | | |
Collapse
|
20
|
Kohler C, Lourenço RF, Bernhardt J, Albrecht D, Schüler J, Hecker M, Gomes SL. A comprehensive genomic, transcriptomic and proteomic analysis of a hyperosmotic stress sensitive α-proteobacterium. BMC Microbiol 2015; 15:71. [PMID: 25879753 PMCID: PMC4391529 DOI: 10.1186/s12866-015-0404-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/11/2015] [Indexed: 11/15/2022] Open
Abstract
Background With the aim of remaining viable, bacteria must deal with changes in environmental conditions, including increases in external osmolarity. While studies concerning bacterial response to this stress condition have focused on soil, marine and enteric species, this report is about Caulobacter crescentus, a species inhabiting freshwater oligotrophic habitats. Results A genomic analysis reported in this study shows that most of the classical genes known to be involved in intracellular solute accumulation under osmotic adaptation are missing in C. crescentus. Consistent with this observation, growth assays revealed a restricted capability of the bacterium to propagate under hyperosmotic stress, and addition of the compatible solute glycine betaine did not improve bacterial resistance. A combination of transcriptomic and proteomic analyses indicated quite similar changes triggered by the presence of either salt or sucrose, including down-regulation of many housekeeping processes and up-regulation of functions related to environmental adaptation. Furthermore, a GC-MS analysis revealed some metabolites at slightly increased levels in stressed cells, but none of them corresponding to well-established compatible solutes. Conclusion Despite a clear response to hyperosmotic stress, it seems that the restricted capability of C. crescentus to tolerate this unfavorable condition is probably a consequence of the inability to accumulate intracellular solutes. This finding is consistent with the ecology of the bacterium, which inhabits aquatic environments with low nutrient concentration. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0404-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Kohler
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil. .,Present address: Friedrich Loeffler Institut for Medical Microbiology, Greifswald, Germany.
| | - Rogério F Lourenço
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil.
| | - Jörg Bernhardt
- Institut for Microbiology, Ernst-Moritz-Arndt Universität, Greifswald, Germany.
| | - Dirk Albrecht
- Institut for Microbiology, Ernst-Moritz-Arndt Universität, Greifswald, Germany.
| | - Julia Schüler
- Institut for Microbiology, Ernst-Moritz-Arndt Universität, Greifswald, Germany.
| | - Michael Hecker
- Institut for Microbiology, Ernst-Moritz-Arndt Universität, Greifswald, Germany.
| | - Suely L Gomes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
21
|
Chu DB, Troyer C, Mairinger T, Ortmayr K, Neubauer S, Koellensperger G, Hann S. Isotopologue analysis of sugar phosphates in yeast cell extracts by gas chromatography chemical ionization time-of-flight mass spectrometry. Anal Bioanal Chem 2015; 407:2865-75. [PMID: 25673246 DOI: 10.1007/s00216-015-8521-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 01/17/2015] [Accepted: 01/27/2015] [Indexed: 01/05/2023]
Abstract
Metabolic flux analysis is based on the measurement of isotopologue ratios. In this work, a new GC-MS-based method was introduced enabling accurate determination of isotopologue distributions of sugar phosphates in cell extracts. A GC-TOFMS procedure was developed involving a two-step online derivatization (ethoximation followed by trimethylsilylation) offering high mass resolution, high mass accuracy and the potential of retrospective data analysis typical for TOFMS. The information loss due to fragmentation intrinsic for isotopologue analysis by electron ionization could be overcome by chemical ionization with methane. A thorough optimization regarding pressure of the reaction gas, emission current, electron energy and temperature of the ion source was carried out. For a substantial panel of sugar phosphates both of the glycolysis and the pentose phosphate pathway, sensitive determination of the protonated intact molecular ions together with low abundance fragment ions was successfully achieved. The developed method was evaluated for analysis of Pichia pastoris cell extracts. The measured isotopologue ratios were in the range of 55:1-2:1. The comparison of the experimental isotopologue fractions with the theoretical fractions was excellent, revealing a maximum bias of 4.6% and an average bias of 1.4%.
Collapse
Affiliation(s)
- Dinh Binh Chu
- Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, BOKU Vienna, Muthgasse 18, 1190, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
22
|
Osanai T, Shirai T, Iijima H, Kuwahara A, Suzuki I, Kondo A, Hirai MY. Alteration of cyanobacterial sugar and amino acid metabolism by overexpression hik8, encoding a KaiC-associated histidine kinase. Environ Microbiol 2015; 17:2430-40. [PMID: 25403325 DOI: 10.1111/1462-2920.12715] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/08/2014] [Indexed: 11/28/2022]
Abstract
Cyanobacteria possess circadian clocks consisting of KaiABC proteins, and circadian rhythm must closely relate to the primary metabolism. A histidine kinase, SasA, interacts with KaiC to transduce circadian signals and widely regulates transcription in Synechococcus sp. PCC 7942, although the involvement of SasA in primary metabolism has not been demonstrated at metabolite levels. Here, we generated a strain overexpressing hik8 (HOX80), an orthologue of SasA in Synechocystis sp. PCC 6803. HOX80 grew slowly under light conditions and lost viability under continuous dark conditions. Transcript levels of genes related to sugar catabolism remained higher in HOX80 under dark conditions. Metabolomic analysis revealed that under light conditions, glycogen was undetectable in HOX80, and there were decreased levels of metabolites of sugar catabolism and increased levels of amino acids, compared with those in the wild-type strain. HOX80 exhibited aberrant degradation of SigE proteins after a light-to-dark transition and immunoprecipitation analysis revealed that Hik8 directly interacts with KaiC1. The results of this study demonstrate that overexpression of hik8 widely alters sugar and amino acid metabolism, revealing the involvement of Hik8 in primary metabolism under both light and dark conditions in this cyanobacterium.
Collapse
Affiliation(s)
- Takashi Osanai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.,Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Tomokazu Shirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiroko Iijima
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ayuko Kuwahara
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Iwane Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Akihiko Kondo
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1, Rokkodai, Nada, Kobe, 657-8501
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
23
|
Wang Z, Moslehi-Jenabian S, Solem C, Jensen PR. Increased expression of pyruvate carboxylase and biotin protein ligase increases lysine production in a biotin prototrophicCorynebacterium glutamicumstrain. Eng Life Sci 2014. [DOI: 10.1002/elsc.201400185] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Zhihao Wang
- The National Food Institute; Technical University of Denmark; Kongens Lyngby Denmark
| | | | - Christian Solem
- The National Food Institute; Technical University of Denmark; Kongens Lyngby Denmark
| | - Peter Ruhdal Jensen
- The National Food Institute; Technical University of Denmark; Kongens Lyngby Denmark
| |
Collapse
|
24
|
Surmann K, Michalik S, Hildebrandt P, Gierok P, Depke M, Brinkmann L, Bernhardt J, Salazar MG, Sun Z, Shteynberg D, Kusebauch U, Moritz RL, Wollscheid B, Lalk M, Völker U, Schmidt F. Comparative proteome analysis reveals conserved and specific adaptation patterns of Staphylococcus aureus after internalization by different types of human non-professional phagocytic host cells. Front Microbiol 2014; 5:392. [PMID: 25136337 PMCID: PMC4117987 DOI: 10.3389/fmicb.2014.00392] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/13/2014] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a human pathogen that can cause a wide range of diseases. Although formerly regarded as extracellular pathogen, it has been shown that S. aureus can also be internalized by host cells and persist within these cells. In the present study, we comparatively analyzed survival and physiological adaptation of S. aureus HG001 after internalization by two human lung epithelial cell lines (S9 and A549), and human embryonic kidney cells (HEK 293). Combining enrichment of bacteria from host-pathogen assays by cell sorting and quantitation of the pathogen's proteome by mass spectrometry we characterized S. aureus adaptation during the initial phase between 2.5 h and 6.5 h post-infection. Starting with about 2 × 106 bacteria, roughly 1450 S. aureus proteins, including virulence factors and metabolic enzymes were identified by spectral comparison and classical database searches. Most of the bacterial adaptation reactions, such as decreased levels of ribosomal proteins and metabolic enzymes or increased amounts of proteins involved in arginine and lysine biosynthesis, enzymes coding for terminal oxidases and stress responsive proteins or activation of the sigma factor SigB were observed after internalization into any of the three cell lines studied. However, differences were noted in central carbon metabolism including regulation of fermentation and threonine degradation. Since these differences coincided with different intracellular growth behavior, complementary profiling of the metabolome of the different non-infected host cell types was performed. This revealed similar levels of intracellular glucose but host cell specific differences in the amounts of amino acids such as glycine, threonine or glutamate. With this comparative study we provide an impression of the common and specific features of the adaptation of S. aureus HG001 to specific host cell environments as a starting point for follow-up studies with different strain isolates and regulatory mutants.
Collapse
Affiliation(s)
- Kristin Surmann
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald Greifswald, Germany
| | - Stephan Michalik
- ZIK-FunGene Junior Research Group Applied Proteomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald Greifswald, Germany
| | - Petra Hildebrandt
- ZIK-FunGene Junior Research Group Applied Proteomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald Greifswald, Germany
| | - Philipp Gierok
- Institute of Biochemistry, Ernst-Moritz-Arndt-University Greifswald Greifswald, Germany
| | - Maren Depke
- ZIK-FunGene Junior Research Group Applied Proteomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald Greifswald, Germany
| | - Lars Brinkmann
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald Greifswald, Germany
| | - Jörg Bernhardt
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald Greifswald, Germany
| | - Manuela G Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald Greifswald, Germany
| | - Zhi Sun
- Institute for Systems Biology Seattle, WA USA
| | | | | | | | - Bernd Wollscheid
- Institute of Molecular Systems Biology, ETH Zurich Zurich, Switzerland
| | - Michael Lalk
- Institute of Biochemistry, Ernst-Moritz-Arndt-University Greifswald Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald Greifswald, Germany
| | - Frank Schmidt
- ZIK-FunGene Junior Research Group Applied Proteomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald Greifswald, Germany
| |
Collapse
|
25
|
Gierok P, Harms M, Richter E, Hildebrandt JP, Lalk M, Mostertz J, Hochgräfe F. Staphylococcus aureus alpha-toxin mediates general and cell type-specific changes in metabolite concentrations of immortalized human airway epithelial cells. PLoS One 2014; 9:e94818. [PMID: 24733556 PMCID: PMC3986243 DOI: 10.1371/journal.pone.0094818] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/20/2014] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus aureus alpha-toxin (Hla) is a potent pore-forming cytotoxin that plays an important role in the pathogenesis of S. aureus infections, including pneumonia. The impact of Hla on the dynamics of the metabolome in eukaryotic host cells has not been investigated comprehensively. Using 1H-NMR, GC-MS and HPLC-MS, we quantified the concentrations of 51 intracellular metabolites and assessed alterations in the amount of 25 extracellular metabolites in the two human bronchial epithelial cell lines S9 and 16HBE14o− under standard culture conditions and after treatment with sub-lethal amounts (2 µg/ml) of recombinant Hla (rHla) in a time-dependent manner. Treatment of cells with rHla caused substantial decreases in the concentrations of intracellular metabolites from different metabolic pathways in both cell lines, including ATP and amino acids. Concomitant increases in the extracellular concentrations were detected for various intracellular compounds, including nucleotides, glutathione disulfide and NAD+. Our results indicate that rHla has a major impact on the metabolome of eukaryotic cells as a consequence of direct rHla-mediated alterations in plasma membrane permeability or indirect effects mediated by cellular signalling. However, cell-specific changes also were observed. Glucose consumption and lactate production rates suggest that the glycolytic activity of S9 cells, but not of 16HBE14o− cells, is increased in response to rHla. This could contribute to the observed higher level of resistance of S9 cells against rHla-induced membrane damage.
Collapse
Affiliation(s)
- Philipp Gierok
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Manuela Harms
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, Greifswald, Germany
| | - Erik Richter
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, Greifswald, Germany
| | - Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Jörg Mostertz
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, Greifswald, Germany
| | - Falko Hochgräfe
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, Greifswald, Germany
- * E-mail:
| |
Collapse
|
26
|
Pink M, Verma N, Rettenmeier AW, Schmitz-Spanke S. Integrated proteomic and metabolomic analysis to assess the effects of pure and benzo[a]pyrene-loaded carbon black particles on energy metabolism and motility in the human endothelial cell line EA.hy926. Arch Toxicol 2014; 88:913-34. [DOI: 10.1007/s00204-014-1200-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 01/14/2014] [Indexed: 12/20/2022]
|
27
|
Liebeke M, Lalk M. Staphylococcus aureus metabolic response to changing environmental conditions - a metabolomics perspective. Int J Med Microbiol 2013; 304:222-9. [PMID: 24439195 DOI: 10.1016/j.ijmm.2013.11.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/30/2013] [Accepted: 11/25/2013] [Indexed: 01/16/2023] Open
Abstract
Microorganisms preserve their metabolic function against a wide range of external perturbations including biotic or abiotic factors by utilizing cellular adaptations to maintain cell homeostasis. Functional genomics aims to detect such adaptive alterations on the level of transcriptome, proteome and metabolome to understand system wide changes and to identify interactions between the different levels of biochemical organization. Microbial metabolomics measures metabolites, the direct biochemical response to the environment, and is pivotal to the understanding of the variability and dynamics of bacterial cell metabolism. Metabolomics can measure many different types of compounds including primary metabolites, secondary metabolites, second messengers, quorum sensing compounds and others, which all contribute to the complex bacterial response to an environmental change. Recent data confirmed that many metabolic processes in pathogenic bacteria are linked to virulence and invasive capabilities. Deciphering bacterial metabolism in response to specific environmental conditions and in specific genetic backgrounds will help map the complex network between the metabolome and the other "-omes". Here, we will review a selection of case studies for the pathogenic Gram-positive bacterium Staphylococcus aureus and summarize the current state of metabolomics literature covering staphylococci metabolism under different physiological states.
Collapse
Affiliation(s)
- Manuel Liebeke
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
| | - Michael Lalk
- Institute of Biochemistry, Ernst-Moritz-Arndt-University of Greifswald, 17487 Greifswald, Germany
| |
Collapse
|
28
|
Qu L, Ren LJ, Li J, Sun GN, Sun LN, Ji XJ, Nie ZK, Huang H. Biomass composition, lipid characterization, and metabolic profile analysis of the fed-batch fermentation process of two different docosahexanoic acid producing Schizochytrium sp. strains. Appl Biochem Biotechnol 2013; 171:1865-76. [PMID: 24061873 DOI: 10.1007/s12010-013-0456-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
Abstract
Growth and fermentation characteristics, biomass composition, lipid characterization and metabolic profiling analysis of two different Schizochytrium sp. strains, the original strain and the industrial adaptive strain, were investigated in the fed-batch fermentation process. The final cell biomass, total lipids content, docosahexanoic acid (DHA) content and DHA productivity of the adaptive strain were much higher than those of the original strain. The metabolic distinctions which extensively existed between these two strains were revealed by the score plot of principal component analysis. In addition, potential biomarkers responsible for discriminating different strains were identified as myo-inositol, histidine, alanine, asparagine, cysteine, and oxalic acid. These findings provided new insights into the industrial strain screening and further improvement of DHA production by Schizochytrium sp.
Collapse
Affiliation(s)
- Liang Qu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing, 210009, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tielen P, Rosin N, Meyer AK, Dohnt K, Haddad I, Jänsch L, Klein J, Narten M, Pommerenke C, Scheer M, Schobert M, Schomburg D, Thielen B, Jahn D. Regulatory and metabolic networks for the adaptation of Pseudomonas aeruginosa biofilms to urinary tract-like conditions. PLoS One 2013; 8:e71845. [PMID: 23967252 PMCID: PMC3742457 DOI: 10.1371/journal.pone.0071845] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 07/04/2013] [Indexed: 11/19/2022] Open
Abstract
Biofilms of the Gram-negative bacterium Pseudomonas aeruginosa are one of the major causes of complicated urinary tract infections with detrimental outcome. To develop novel therapeutic strategies the molecular adaption strategies of P. aeruginosa biofilms to the conditions of the urinary tract were investigated thoroughly at the systems level using transcriptome, proteome, metabolome and enzyme activity analyses. For this purpose biofilms were grown anaerobically in artificial urine medium (AUM). Obtained data were integrated bioinformatically into gene regulatory and metabolic networks. The dominating response at the transcriptome and proteome level was the adaptation to iron limitation via the broad Fur regulon including 19 sigma factors and up to 80 regulated target genes or operons. In agreement, reduction of the iron cofactor-dependent nitrate respiratory metabolism was detected. An adaptation of the central metabolism to lactate, citrate and amino acid as carbon sources with the induction of the glyoxylate bypass was observed, while other components of AUM like urea and creatinine were not used. Amino acid utilization pathways were found induced, while fatty acid biosynthesis was reduced. The high amounts of phosphate found in AUM explain the reduction of phosphate assimilation systems. Increased quorum sensing activity with the parallel reduction of chemotaxis and flagellum assembly underscored the importance of the biofilm life style. However, reduced formation of the extracellular polysaccharide alginate, typical for P. aeruginosa biofilms in lungs, indicated a different biofilm type for urinary tract infections. Furthermore, the obtained quorum sensing response results in an increased production of virulence factors like the extracellular lipase LipA and protease LasB and AprA explaining the harmful cause of these infections.
Collapse
Affiliation(s)
- Petra Tielen
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Du X, Zeisel SH. Spectral deconvolution for gas chromatography mass spectrometry-based metabolomics: current status and future perspectives. Comput Struct Biotechnol J 2013; 4:e201301013. [PMID: 24688694 PMCID: PMC3962095 DOI: 10.5936/csbj.201301013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 06/20/2013] [Accepted: 06/23/2013] [Indexed: 12/28/2022] Open
Abstract
Mass spectrometry coupled to gas chromatography (GC-MS) has been widely applied in the field of metabolomics. Success of this application has benefited greatly from computational workflows that process the complex raw mass spectrometry data and extract the qualitative and quantitative information of metabolites. Among the computational algorithms within a workflow, deconvolution is critical since it reconstructs a pure mass spectrum for each component that the mass spectrometer observes. Based on the pure spectrum, the corresponding component can be eventually identified and quantified. Deconvolution is challenging due to the existence of co-elution. In this review, we focus on progress that has been made in the development of deconvolution algorithms and provide thoughts on future developments that will expand the application of GC-MS in metabolomics.
Collapse
Affiliation(s)
- Xiuxia Du
- Department of Bioinformatics, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Steven H Zeisel
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| |
Collapse
|
31
|
Bruheim P, Kvitvang HFN, Villas-Boas SG. Stable isotope coded derivatizing reagents as internal standards in metabolite profiling. J Chromatogr A 2013; 1296:196-203. [DOI: 10.1016/j.chroma.2013.03.072] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 12/26/2022]
|
32
|
Li J, Ren LJ, Sun GN, Qu L, Huang H. Comparative metabolomics analysis of docosahexaenoic acid fermentation processes by Schizochytrium sp. under different oxygen availability conditions. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:269-81. [PMID: 23586678 DOI: 10.1089/omi.2012.0088] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The intracellular metabolic profile characterization of Schizochytrium sp. throughout docosahexaenoic acid fermentation was investigated using gas chromatography-mass spectrometry (GC-MS). Metabolite profiles originating from Schizochytrium sp. under normal and limited oxygen supply conditions were distinctive and distinguished by principal components analysis (PCA). A total of more than 60 intracellular metabolites were detected and quantified with the levels of some metabolites involved in central carbon metabolism varying throughout both processes. Both fermentation processes were differentiated into three main phases by principal components analysis. Potential biomarkers responsible for distinguishing the different fermentation phases were identified as glutamic acid, proline, glycine, alanine, and glucose. In addition, alanine, glutamic acid, glucose, inositol, ornithine, and galactose were found to make great contribution for dry cell weight and fatty acid composition during normal and limited oxygen supply fermentations. Furthermore, significantly higher levels of succinate and several amino acids in cells of limited oxygen supply fermentation revealed that they might play important roles in resisting oxygen deficiency and increasing DHA synthesis during the lipid accumulation. These findings provide novel insights into the metabolomic characteristics during docosahexaenoic acid fermentation processes by Schizochytrium sp.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology Nanjing, China
| | | | | | | | | |
Collapse
|
33
|
Ikeda M, Takeno S. Amino Acid Production by Corynebacterium glutamicum. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Choorapoikayil S, Schoepe J, Buchinger S, Schomburg D. Analysis of in vivo Function of Predicted Isoenzymes—A Metabolomic Approach. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:668-80. [DOI: 10.1089/omi.2012.0055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Jan Schoepe
- Institute of Biochemistry, University of Cologne, Köln, Germany
| | - Sebastian Buchinger
- Institute of Biochemistry, University of Cologne, Köln, Germany
- Current address: German Federal Institute of Hydrology, Koblenz 56068, Germany
| | - Dietmar Schomburg
- Institute of Biochemistry, University of Cologne, Köln, Germany
- Current address: Department of Bioinformatics & Biochemistry, TU Braunschweig, Braunschweig 38106, Germany
| |
Collapse
|
35
|
Sugar transport systems in Corynebacterium glutamicum: features and applications to strain development. Appl Microbiol Biotechnol 2012; 96:1191-200. [PMID: 23081775 DOI: 10.1007/s00253-012-4488-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/01/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
Abstract
Corynebacterium glutamicum uses the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) to take up and phosphorylate glucose, fructose, and sucrose, the major sugars from agricultural crops that are used as the primary feedstocks for industrial amino acid fermentation. This means that worldwide amino acid production using this organism has depended exclusively on the PTS. Recently, a better understanding not only of PTS-mediated sugar uptake but also of global regulation associated with the PTS has permitted the correction of certain negative aspects of this sugar transport system for amino acid production. In addition, the recent identification of different glucose uptake systems in this organism has led to a strategy for the generation of C. glutamicum strains that express non-PTS routes instead of the original PTS. The potential practical advantages of the development of such strains are discussed.
Collapse
|
36
|
Li K, Pidatala RR, Ramakrishna W. Mutational, proteomic and metabolomic analysis of a plant growth promoting copper-resistant Pseudomonas spp. FEMS Microbiol Lett 2012; 335:140-8. [PMID: 22845850 DOI: 10.1111/j.1574-6968.2012.02646.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 06/14/2012] [Accepted: 07/25/2012] [Indexed: 11/28/2022] Open
Abstract
Pseudomonas sp. TLC6-6.5-4 is a multiple metal resistant plant growth-promoting bacteria isolated from copper-contaminated lake sediments. In this study, a comprehensive analysis of genes involved in copper resistance was performed by generating a library of transposon (Tn5) mutants. Two copper-sensitive mutants with significant reduction in copper resistance were identified: CSM1, a mutant disrupted in trpA gene (tryptophan synthase alpha subunit), and CSM2, a mutant disrupted in clpA gene (ATP-dependent Clp protease). Proteomic and metabolomic analyses were performed to identify biochemical and molecular mechanisms involved in copper resistance using CSM2 due to its lower minimum inhibitory concentration compared with CSM1 and the wild type. Proteomic analysis revealed that disruption of Clp protease gene up-regulated molecular chaperones and down-regulated the expression of enzymes related to tRNA modification, whereas metabolomic analysis showed that amino acid and oligosaccharide transporters that are part of ATP-binding cassette (ABC) transporters pathways were down-regulated. Further, copper stress altered metabolic pathways including the tricarboxylic acid cycle, protein absorption and glyoxylate metabolism.
Collapse
Affiliation(s)
- Kefeng Li
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | | | | |
Collapse
|
37
|
Klockgether J, Miethke N, Kubesch P, Bohn YS, Brockhausen I, Cramer N, Eberl L, Greipel J, Herrmann C, Herrmann S, Horatzek S, Lingner M, Luciano L, Salunkhe P, Schomburg D, Wehsling M, Wiehlmann L, Davenport CF, Tümmler B. Intraclonal diversity of the Pseudomonas aeruginosa cystic fibrosis airway isolates TBCF10839 and TBCF121838: distinct signatures of transcriptome, proteome, metabolome, adherence and pathogenicity despite an almost identical genome sequence. Environ Microbiol 2012; 15:191-210. [PMID: 22882573 DOI: 10.1111/j.1462-2920.2012.02842.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microevolution of closely related Pseudomonas aeruginosa was compared in the clone TB strains TBCF10839 and TBCF121838 which had been isolated from two unrelated individuals with cystic fibrosis who had acquired clone TB during a local outbreak. Compared with the strain PAO1 reference sequence the two clone TB genomes shared 23 155 nucleotide exchanges, 32 out-of-frame indels in the coding region and another repertoire of replacement and genomic islands such as PAGI-1, PAGI-2, PAGI-5, LESGI-1 and LES-prophage 4. Only TBCF121838 carried a genomic island known from Ralstonia pickettii. Six of the seven strain-specific sequence variations in the core genome were detected in genes affecting motility, biofilm formation or virulence, i.e. non-synonymous nucleotide substitutions in mexS, PA3729, PA5017, mifR, a frameshift mutation in pilF (TBCF121838) and an intragenic deletion in pilQ (TBCF10839). Despite their almost identical genome sequence the two strains differed strongly from each other in transcriptome and metabolome profiles, mucin adherence and phagocytosis assays. TBCF121838 was susceptible to killing by neutrophils, but TBCF10839 could grow in leucocytes. Microevolution in P. aeruginosa apparently can generate novel complex traits by few or even single mutations provided that predisposing mutational events had occurred before in the clonal lineage.
Collapse
Affiliation(s)
- Jens Klockgether
- Klinische Forschergruppe, Zentrum Biochemie und Zentrum Kinder- und Jugendmedizin, OE 6710, D-30625 Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wu J, Yu H, Dai H, Mei W, Huang X, Zhu S, Peng M. Metabolite profiles of rice cultivars containing bacterial blight-resistant genes are distinctive from susceptible rice. Acta Biochim Biophys Sin (Shanghai) 2012; 44:650-9. [PMID: 22687573 DOI: 10.1093/abbs/gms043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The metabolic changes of bacterial blight-resistant line C418/Xa23 generated by molecular marker-assisted selection (n= 12), transgenic variety C418-Xa21 generated by using the Agrobacterium-mediated system (n= 12), and progenitor cultivar C418 (n= 12) were monitored using gas chromatography/mass spectrometry. The validation, discrimination, and establishment of correlative relationships between metabolite signals were performed by cluster analysis, principal component analysis, and partial least squares-discriminant analysis. Significant and unintended changes were observed in 154 components in C418/Xa23 and 48 components in C418-Xa21 compared with C418 (P< 0.05, Fold change > 2.0). The most significant decreases detected (P< 0.001) in both C418/Xa23 and C418-Xa21 were in three amino acids: glycine, tyrosine, and alanine, and four identified metabolites: malic acid, ferulic acid, succinic acid, and glycerol. Linoleic acid was increased specifically in C418/Xa23 which was derived from traditional breeding. This line, possessing a distinctive metabolite profile as a positive control, shows more differences vs. the parental than the transgenic line. Only succinic acid that falls outside the boundaries of natural variability between the two non-transgenic varieties C418 and C418/Xa23 should be further investigated with respect to safety or nutritional impact.
Collapse
Affiliation(s)
- Jiao Wu
- Institute of Tropic Bioscience and Biotechnology, Chinese Academy of Tropic Agricultural Sciences, Haikou 571101, China
| | | | | | | | | | | | | |
Collapse
|
39
|
van Ooyen J, Noack S, Bott M, Reth A, Eggeling L. Improved L-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity. Biotechnol Bioeng 2012; 109:2070-81. [DOI: 10.1002/bit.24486] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/15/2012] [Accepted: 02/22/2012] [Indexed: 01/25/2023]
|
40
|
Vielhauer O, Zakhartsev M, Horn T, Takors R, Reuss M. Simplified absolute metabolite quantification by gas chromatography–isotope dilution mass spectrometry on the basis of commercially available source material. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:3859-70. [DOI: 10.1016/j.jchromb.2011.10.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/21/2011] [Accepted: 10/25/2011] [Indexed: 02/08/2023]
|
41
|
Koek MM, Jellema RH, van der Greef J, Tas AC, Hankemeier T. Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives. Metabolomics 2011; 7:307-328. [PMID: 21949491 PMCID: PMC3155681 DOI: 10.1007/s11306-010-0254-3] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 10/25/2010] [Indexed: 01/17/2023]
Abstract
Metabolomics involves the unbiased quantitative and qualitative analysis of the complete set of metabolites present in cells, body fluids and tissues (the metabolome). By analyzing differences between metabolomes using biostatistics (multivariate data analysis; pattern recognition), metabolites relevant to a specific phenotypic characteristic can be identified. However, the reliability of the analytical data is a prerequisite for correct biological interpretation in metabolomics analysis. In this review the challenges in quantitative metabolomics analysis with regards to analytical as well as data preprocessing steps are discussed. Recommendations are given on how to optimize and validate comprehensive silylation-based methods from sample extraction and derivatization up to data preprocessing and how to perform quality control during metabolomics studies. The current state of method validation and data preprocessing methods used in published literature are discussed and a perspective on the future research necessary to obtain accurate quantitative data from comprehensive GC-MS data is provided.
Collapse
Affiliation(s)
- Maud M. Koek
- Analytical Research Department, TNO Quality of Life, Utrechtseweg 48, P.O. Box 360, 3700 AJ Zeist, The Netherlands
| | - Renger H. Jellema
- DSM Biotechnology Center, Alexander Fleminglaan 1, P.O. Box 1, 2600 MA Delft, The Netherlands
| | - Jan van der Greef
- Division of Analytical Biosciences, Leiden/Amsterdam Center for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- SU BioMedicine and TNO Quality of Life, Utrechtseweg 48, P.O. Box 360, 3700 AJ Zeist, The Netherlands
| | - Albert C. Tas
- Analytical Research Department, TNO Quality of Life, Utrechtseweg 48, P.O. Box 360, 3700 AJ Zeist, The Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden/Amsterdam Center for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
42
|
Koek MM, van der Kloet FM, Kleemann R, Kooistra T, Verheij ER, Hankemeier T. Semi-automated non-target processing in GC × GC-MS metabolomics analysis: applicability for biomedical studies. Metabolomics 2011; 7:1-14. [PMID: 21461033 PMCID: PMC3040320 DOI: 10.1007/s11306-010-0219-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Accepted: 05/25/2010] [Indexed: 02/06/2023]
Abstract
Due to the complexity of typical metabolomics samples and the many steps required to obtain quantitative data in GC × GC-MS consisting of deconvolution, peak picking, peak merging, and integration, the unbiased non-target quantification of GC × GC-MS data still poses a major challenge in metabolomics analysis. The feasibility of using commercially available software for non-target processing of GC × GC-MS data was assessed. For this purpose a set of mouse liver samples (24 study samples and five quality control (QC) samples prepared from the study samples) were measured with GC × GC-MS and GC-MS to study the development and progression of insulin resistance, a primary characteristic of diabetes type 2. A total of 170 and 691 peaks were quantified in, respectively, the GC-MS and GC × GC-MS data for all study and QC samples. The quantitative results for the QC samples were compared to assess the quality of semi-automated GC × GC-MS processing compared to targeted GC-MS processing which involved time-consuming manual correction of all wrongly integrated metabolites and was considered as golden standard. The relative standard deviations (RSDs) obtained with GC × GC-MS were somewhat higher than with GC-MS, due to less accurate processing. Still, the biological information in the study samples was preserved and the added value of GC × GC-MS was demonstrated; many additional candidate biomarkers were found with GC × GC-MS compared to GC-MS. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-010-0219-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maud M. Koek
- Analytical Research Department, TNO Quality of Life, Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| | - Frans M. van der Kloet
- LACDR Analytical Biosciences, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Robert Kleemann
- Department of Vascular and Metabolic Disease, TNO Quality of Life, Zernikedreef 9, 2333 CK Leiden, The Netherlands
| | - Teake Kooistra
- Department of Vascular and Metabolic Disease, TNO Quality of Life, Zernikedreef 9, 2333 CK Leiden, The Netherlands
| | - Elwin R. Verheij
- Analytical Research Department, TNO Quality of Life, Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| | - Thomas Hankemeier
- LACDR Analytical Biosciences, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
43
|
Chung JH, Na YC, Hwang GS, Shin JH, Ahn YG. Development of chemical ionization method in a GC-TOF mass spectrometer for accurate mass and isotope ratio measurement. ANALYTICAL SCIENCE AND TECHNOLOGY 2011. [DOI: 10.5806/ast.2011.24.1.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Kim JY, Lee JI, Cheong JC, Suh YJ, In MK. Uncertainty evaluation of the analysis of 11-nor-9-carboxy-Δ 9-tetrahydrocannabinol in hair by GC-NCI-MS/MS. ANALYTICAL SCIENCE AND TECHNOLOGY 2011. [DOI: 10.5806/ast.2011.24.1.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Jannasch A, Sedlak M, Adamec J. Quantification of pentose phosphate pathway (PPP) metabolites by liquid chromatography-mass spectrometry (LC-MS). Methods Mol Biol 2011; 708:159-71. [PMID: 21207289 DOI: 10.1007/978-1-61737-985-7_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pentose phosphate pathway plays an important role in several cellular processes including biosynthesis and catabolism of five-carbon sugars and generation of reducing power through NADPH synthesis. Although the pentose phosphate metabolic reaction network has been mapped in substantial detail, the comprehensive quantitative analysis of the rates and regulation of individual reactions remains a major interest for various biofields. Here we describe a simple method for comprehensive quantitative analysis of pentose phosphate pathway intermediates. The method is based on Group Specific Internal Standard Technology (GSIST) labeling in which an experimental sample and corresponding internal standards are derivatized in vitro with isotope-coded reagents in separate reactions, then mixed and analyzed in a single LC-MS run. The use of co-eluting isotope-coded internal standards and experimental molecules eliminates potential issues with ion suppression and allows for precise quantification of individual metabolites. Derivatization also increases hydrophobicity of the metabolites enabling their effective separation using reversed-phase chromatography.
Collapse
Affiliation(s)
- Amber Jannasch
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA.
| | | | | |
Collapse
|
46
|
A simple and rapid GC/MS method for the simultaneous determination of gaseous metabolites. J Microbiol Methods 2010; 84:46-51. [PMID: 20971136 DOI: 10.1016/j.mimet.2010.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/13/2010] [Accepted: 10/13/2010] [Indexed: 11/20/2022]
Abstract
We modified and tuned a commercial model of a gas chromatography/mass spectrometry (GC/MS) instrument to develop a simple and rapid method for the simultaneous quantification of a variety of gas species. Using the developed method with the newly modified instrument, gas species such as H(2), N(2), O(2), CO, NO, CH(4), CO(2), and N(2)O, which are common components of microbial metabolism, were accurately identified based on their retention times and/or mass-to-charge ratios (m/z) in less than 2.5 min. By examining the sensitivities and dynamic ranges for the detection of H(2), N(2), O(2), CH(4), CO(2), and N(2)O, it was demonstrated that the method developed in this study was sufficient for accurately monitoring the production and the consumption of these gaseous species during microbial metabolism. The utility of the new method was demonstrated by a denitrification study with Pseudomonas aureofaciens ATCC 13985(T). This method will be suitable for a variety of applications requiring the identification of gaseous metabolites in microorganisms, microbial communities, and natural ecosystems.
Collapse
|
47
|
Frimmersdorf E, Horatzek S, Pelnikevich A, Wiehlmann L, Schomburg D. How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach. Environ Microbiol 2010; 12:1734-47. [PMID: 20553553 DOI: 10.1111/j.1462-2920.2010.02253.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In addition to transcriptome and proteome studies, metabolome analysis represents a third complementary approach to identify metabolic pathways and adaptation processes. In order to elucidate basic principles of metabolic versatility of Pseudomonas aeruginosa, we investigated the metabolome profiles of two genetically and morphologically divergent strains, the reference strain PAO1 and the mucoid clinical isolate TBCF10839 in exponential growth and stationary phase in six different carbon sources (cadaverine, casamino acids, citrate, glucose, succinate and tryptone). Both strains exhibited strong similarities in mode of growth; the metabolite patterns were mainly defined by the growth condition. Besides this adaptive response, a basic core metabolism shapes the P. aeruginosa metabolome, independent of growth phase, carbon source and genetic background. This core metabolism includes pathways related to the central energy and amino acid metabolism. These consistently utilized metabolic pathways are closely related to glutamate which represents a dominant metabolite in all conditions analysed. In nutrient-depleted media of stationary phase cultures, P. aeruginosa maintains a specific repertoire of metabolic pathways that are related to the carbon source formerly available. This specified adaptation strategy combined with the invariant basic core metabolism may represent a fundamental requirement for the metabolic versatility of this organism.
Collapse
Affiliation(s)
- Eliane Frimmersdorf
- Department of Biochemistry and Bioinformatics, Institute for Biochemistry & Biotechnology, Technische Universitaet Braunschweig, 38106 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
48
|
Woo HM, Noack S, Seibold GM, Willbold S, Eikmanns BJ, Bott M. Link between phosphate starvation and glycogen metabolism in Corynebacterium glutamicum, revealed by metabolomics. Appl Environ Microbiol 2010; 76:6910-9. [PMID: 20802079 PMCID: PMC2953031 DOI: 10.1128/aem.01375-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 08/14/2010] [Indexed: 11/20/2022] Open
Abstract
In this study, we analyzed the influence of phosphate (P(i)) limitation on the metabolism of Corynebacterium glutamicum. Metabolite analysis by gas chromatography-time-of-flight (GC-TOF) mass spectrometry of cells cultivated in glucose minimal medium revealed a greatly increased maltose level under P(i) limitation. As maltose formation could be linked to glycogen metabolism, the cellular glycogen content was determined. Unlike in cells grown under P(i) excess, the glycogen level in P(i)-limited cells remained high in the stationary phase. Surprisingly, even acetate-grown cells, which do not form glycogen under P(i) excess, did so under P(i) limitation and also retained it in stationary phase. Expression of pgm and glgC, encoding the first two enzymes of glycogen synthesis, phosphoglucomutase and ADP-glucose pyrophosphorylase, was found to be increased 6- and 3-fold under P(i) limitation, respectively. Increased glycogen synthesis together with a decreased glycogen degradation might be responsible for the altered glycogen metabolism. Independent from these experimental results, flux balance analysis suggested that an increased carbon flux to glycogen is a solution for C. glutamicum to adapt carbon metabolism to limited P(i) concentrations.
Collapse
Affiliation(s)
- Han Min Woo
- Institute of Biotechnology 1, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biotechnology 2, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Microbiology and Biotechnology, Ulm University, D-89081 Ulm, Germany, Central Division of Analytical Chemistry, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany
| | - Stephan Noack
- Institute of Biotechnology 1, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biotechnology 2, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Microbiology and Biotechnology, Ulm University, D-89081 Ulm, Germany, Central Division of Analytical Chemistry, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany
| | - Gerd M. Seibold
- Institute of Biotechnology 1, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biotechnology 2, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Microbiology and Biotechnology, Ulm University, D-89081 Ulm, Germany, Central Division of Analytical Chemistry, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany
| | - Sabine Willbold
- Institute of Biotechnology 1, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biotechnology 2, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Microbiology and Biotechnology, Ulm University, D-89081 Ulm, Germany, Central Division of Analytical Chemistry, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany
| | - Bernhard J. Eikmanns
- Institute of Biotechnology 1, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biotechnology 2, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Microbiology and Biotechnology, Ulm University, D-89081 Ulm, Germany, Central Division of Analytical Chemistry, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany
| | - Michael Bott
- Institute of Biotechnology 1, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biotechnology 2, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Microbiology and Biotechnology, Ulm University, D-89081 Ulm, Germany, Central Division of Analytical Chemistry, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
49
|
Büscher JM, Czernik D, Ewald JC, Sauer U, Zamboni N. Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Anal Chem 2010; 81:2135-43. [PMID: 19236023 DOI: 10.1021/ac8022857] [Citation(s) in RCA: 269] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Quantitative metabolomics is under intense development, and no commonly accepted standard analytical technique has emerged, yet. The employed analytical methods were mostly chosen based on educated guesses. So far, there has been no systematic cross-platform comparison of different separation and detection methods for quantitative metabolomics. Generally, the chromatographic separation of metabolites followed by their selective detection in a mass spectrometer (MS) is the most promising approach in terms of sensitivity and separation power. Using a defined mixture of 91 metabolites (covering glycolysis, pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, redox metabolism, amino acids, and nucleotides), we compared six separation methods designed for the analysis of these mostly very polar primary metabolites, two methods each for gas chromatography (GC), liquid chromatography (LC), and capillary electrophoresis (CE). For analyses on a single platform, LC provides the best combination of both versatility and robustness. If a second platform can be used, it is best complemented by GC. Only liquid-phase separation systems can handle large polar metabolites, such as those containing multiple phosphate groups. As assessed by supplementing the defined mixture with (13)C-labeled yeast extracts, matrix effects are a common phenomenon on all platforms. Therefore, suitable internal standards, such as (13)C-labeled biomass extracts, are mandatory for quantitative metabolomics with any methods.
Collapse
Affiliation(s)
- Jörg Martin Büscher
- Institute of Molecular Systems Biology, ETH Zurich, Wolfgang-Pauli Strasse 16, 8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
50
|
A rapid microwave-assisted derivatization of bacterial metabolome samples for gas chromatography/mass spectrometry analysis. Anal Biochem 2010; 401:312-4. [DOI: 10.1016/j.ab.2009.04.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/11/2009] [Accepted: 04/17/2009] [Indexed: 11/30/2022]
|