1
|
Yang J, Dear AJ, Michaels TCT, Dobson CM, Knowles TPJ, Wu S, Perrett S. Direct Observation of Oligomerization by Single Molecule Fluorescence Reveals a Multistep Aggregation Mechanism for the Yeast Prion Protein Ure2. J Am Chem Soc 2018; 140:2493-2503. [PMID: 29357227 PMCID: PMC5880511 DOI: 10.1021/jacs.7b10439] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
The self-assembly of polypeptides
into amyloid structures is associated
with a range of increasingly prevalent neurodegenerative diseases
as well as with a select set of functional processes in biology. The
phenomenon of self-assembly results in species with dramatically different
sizes, from small oligomers to large fibrils; however, the kinetic
relationship between these species is challenging to characterize.
In the case of prion aggregates, these structures can self-replicate
and act as infectious agents. Here we use single molecule spectroscopy
to obtain quantitative information on the oligomer populations formed
during aggregation of the yeast prion protein Ure2. Global analysis
of the aggregation kinetics reveals the molecular mechanism underlying
oligomer formation and depletion. Quantitative characterization indicates
that the majority of Ure2 oligomers are relatively short-lived, and
their rate of dissociation is much higher than their rate of conversion
into growing fibrils. We identify an initial metastable oligomer,
which can subsequently convert into a structurally distinct oligomer,
which in turn converts into growing fibrils. We also show that fragmentation
is responsible for the autocatalytic self-replication of Ure2 fibrils,
but that preformed fibrils do not promote oligomer formation, indicating
that secondary nucleation of the type observed for peptides and proteins
associated with neurodegenerative disease does not occur at a significant
rate for Ure2. These results establish a framework for elucidating
the temporal and causal relationship between oligomers and larger
fibrillar species in amyloid forming systems, and provide insights
into why functional amyloid systems are not toxic to their host organisms.
Collapse
Affiliation(s)
- Jie Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , 15 Datun Road, Chaoyang District, Beijing 100101, China.,University of the Chinese Academy of Sciences , 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Alexander J Dear
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Thomas C T Michaels
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom.,Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom.,Cavendish Laboratory , J J Thomson Avenue, Cambridge CB3 1HE, United Kingdom
| | - Si Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , 15 Datun Road, Chaoyang District, Beijing 100101, China.,University of the Chinese Academy of Sciences , 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , 15 Datun Road, Chaoyang District, Beijing 100101, China.,University of the Chinese Academy of Sciences , 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
2
|
Fei L, Perrett S. New insights into the molecular mechanism of amyloid formation from cysteine scanning. Prion 2010; 4:9-12. [PMID: 20083897 DOI: 10.4161/pri.4.1.10670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Our laboratory recently reported the identification of a peptide region, QVNI, within the prion domain of the yeast protein Ure2 that may act as an initiation point for fibril formation.(1) This potential amyloid-forming region, which corresponds to residues 18-21 of Ure2, was initially identified by systematic cysteine scanning of the Ure2 prion domain. The point mutant R17C, and the corresponding octapeptide CQVNIGNR, were found to form fibrils rapidly under oxidative conditions due to the formation of a disulfide bond. Deletions within the QVNI sequence cause the fibril formation ability of R17C Ure2 to be inhibited. The aggregation propensity of this region is strongly modulated by its preceding residue: replacement of R17 with a hydrophobic residue promotes fibril formation in both full-length Ure2 and in the corresponding octapeptides. The wild-type octapeptide, RQVNIGNR, also forms fibrils, and is the shortest amyloid-forming peptide found for Ure2 to date. Interestingly, the wild-type octapeptide crystallizes readily and so provides a starting point towards obtaining high resolution structural information for the amyloid core of Ure2 fibrils.
Collapse
Affiliation(s)
- Li Fei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | | |
Collapse
|
3
|
Unraveling infectious structures, strain variants and species barriers for the yeast prion [PSI+]. Nat Struct Mol Biol 2009; 16:598-605. [PMID: 19491937 DOI: 10.1038/nsmb.1617] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 05/11/2009] [Indexed: 11/08/2022]
Abstract
Prions are proteins that can access multiple conformations, at least one of which is beta-sheet rich, infectious and self-perpetuating in nature. These infectious proteins show several remarkable biological activities, including the ability to form multiple infectious prion conformations, also known as strains or variants, encoding unique biological phenotypes, and to establish and overcome prion species (transmission) barriers. In this Perspective, we highlight recent studies of the yeast prion [PSI(+)], using various biochemical and structural methods, that have begun to illuminate the molecular mechanisms by which self-perpetuating prions encipher such biological activities. We also discuss several aspects of prion conformational change and structure that remain either unknown or controversial, and we propose approaches to accelerate the understanding of these enigmatic, infectious conformers.
Collapse
|
4
|
Fei L, Perrett S. Disulfide bond formation significantly accelerates the assembly of Ure2p fibrils because of the proximity of a potential amyloid stretch. J Biol Chem 2009; 284:11134-41. [PMID: 19258323 DOI: 10.1074/jbc.m809673200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Aggregation of the Ure2 protein is at the origin of the [URE3] prion trait in the yeast Saccharomyces cerevisiae. The N-terminal region of Ure2p is necessary and sufficient to induce the [URE3] phenotype in vivo and to polymerize into amyloid-like fibrils in vitro. However, as the N-terminal region is poorly ordered in the native state, making it difficult to detect structural changes in this region by spectroscopic methods, detailed information about the fibril assembly process is therefore lacking. Short fibril-forming peptide regions (4-7 residues) have been identified in a number of prion and other amyloid-related proteins, but such short regions have not yet been identified in Ure2p. In this study, we identify a unique cysteine mutant (R17C) that can greatly accelerate the fibril assembly kinetics of Ure2p under oxidizing conditions. We found that the segment QVNI, corresponding to residues 18-21 in Ure2p, plays a critical role in the fast assembly properties of R17C, suggesting that this segment represents a potential amyloid-forming region. A series of peptides containing the QVNI segment were found to form fibrils in vitro. Furthermore, the peptide fibrils could seed fibril formation for wild-type Ure2p. Preceding the QVNI segment with a cysteine or a hydrophobic residue, instead of a charged residue, caused the rate of assembly into fibrils to increase greatly for both peptides and full-length Ure2p. Our results indicate that the potential amyloid stretch and its preceding residue can modulate the fibril assembly of Ure2p to control the initiation of prion formation.
Collapse
Affiliation(s)
- Li Fei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | | |
Collapse
|
5
|
Lian HY, Zhang H, Zhang ZR, Loovers HM, Jones GW, Rowling PJE, Itzhaki LS, Zhou JM, Perrett S. Hsp40 interacts directly with the native state of the yeast prion protein Ure2 and inhibits formation of amyloid-like fibrils. J Biol Chem 2007; 282:11931-40. [PMID: 17324933 DOI: 10.1074/jbc.m606856200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ure2 is the protein determinant of the [URE3] prion phenotype in Saccharomyces cerevisiae and consists of a flexible N-terminal prion-determining domain and a globular C-terminal glutathione transferase-like domain. Overexpression of the type I Hsp40 member Ydj1 in yeast cells has been found to result in the loss of [URE3]. However, the mechanism of prion curing by Ydj1 remains unclear. Here we tested the effect of overexpression of Hsp40 members Ydj1, Sis1, and Apj1 and also Hsp70 co-chaperones Cpr7, Cns1, Sti1, and Fes1 in vivo and found that only Ydj1 showed a strong curing effect on [URE3]. We also investigated the interaction of Ydj1 with Ure2 in vitro. We found that Ydj1 was able to suppress formation of amyloid-like fibrils of Ure2 by delaying the process of fibril formation, as monitored by thioflavin T binding and atomic force microscopy imaging. Controls using bovine serum albumin, Sis1, or the human Hsp40 homologues Hdj1 or Hdj2 showed no significant inhibitory effect. Ydj1 was only effective when added during the lag phase of fibril formation, suggesting that it interacts with Ure2 at an early stage in fibril formation and delays the nucleation process. Using surface plasmon resonance and size exclusion chromatography, we demonstrated a direct interaction between Ydj1 and both wild type and N-terminally truncated Ure2. In contrast, Hdj2, which did not suppress fibril formation, did not show this interaction. The results suggest that Ydj1 inhibits Ure2 fibril formation by binding to the native state of Ure2, thus delaying the onset of oligomerization.
Collapse
Affiliation(s)
- Hui-Yong Lian
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kodali R, Wetzel R. Polymorphism in the intermediates and products of amyloid assembly. Curr Opin Struct Biol 2007; 17:48-57. [PMID: 17251001 DOI: 10.1016/j.sbi.2007.01.007] [Citation(s) in RCA: 309] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 11/28/2006] [Accepted: 01/12/2007] [Indexed: 11/28/2022]
Abstract
Amyloid formation reactions exhibit two classes of polymorphisms: the metastable intermediates commonly observed during amyloid formation and the range of conformationally distinct mature fibrils often seen at the reaction endpoint. Although recent data suggest that spherical oligomers and protofibrils in most cases are not obligate intermediates of amyloid assembly, oligomeric states might sometimes serve as on-pathway intermediates. Mature amyloid polymorphs self-propagate as a result of the normally very high fidelity of amyloid elongation, giving rise to strain behavior and species barriers in prion phenomena. Oligomers, protofibrils and various polymorphic forms of mature amyloid fibrils seem to be distinguished by differences in atomic structure that give rise to differences in observed morphologies.
Collapse
Affiliation(s)
- Ravindra Kodali
- Department of Structural Biology, University of Pittsburgh School of Medicine, 2046 Biomedical Sciences Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
7
|
Vitrenko YA, Gracheva EO, Richmond JE, Liebman SW. Visualization of aggregation of the Rnq1 prion domain and cross-seeding interactions with Sup35NM. J Biol Chem 2007; 282:1779-87. [PMID: 17121829 DOI: 10.1074/jbc.m609269200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Factors triggering the de novo appearance of prions are still poorly understood. In yeast, the appearance of one prion, [PSI(+)], is enhanced by the presence of another prion, [PIN(+)]. The [PSI(+)] and [PIN(+)] prion-forming proteins are, respectively, the translational termination factor Sup35 and the yet poorly characterized Rnq1 protein that is rich in glutamines and asparagines. The prion domain of Rnq1 (RnqPD) polymerizes more readily in vitro than the full-length protein. As is typical for amyloidogenic proteins, the reaction begins with a lag phase, followed by exponential growth. Seeding with pre-formed aggregates significantly shortens the lag. A generic antibody against pre-amyloid oligomer inhibits the unseeded but not the self-seeded reaction. As revealed by electron microscopy, RnqPD polymerizes predominantly into spherical species that eventually agglomerate. We observed infrequent fiber-like structures in samples taken at 4 h of polymerization, but in overnight samples SDS treatment was required to reveal fibers among agglomerates. Polymerization reactions in which RnqPD and the prion domain of Sup35 (Sup35NM) cross-seed each other proceeded with a shortened lag that only depends weakly on the protein concentration. Cross-seeded Sup35NM fibers appear to sprout from globular RnqPD aggregates as seen by electron microscopy. RnqPD spherical aggregates appear to associate with and, later occlude, Sup35NM seed fibers. Our kinetic and morphological analyses suggest that, upon cross-seeding, the aggregate provides the surface on which oligomers of the heterologous protein nucleate their subsequent amyloid formation.
Collapse
Affiliation(s)
- Yakov A Vitrenko
- Department of Biological Sciences, the University of Illinois, Chicago, Illinois 60607, USA
| | | | | | | |
Collapse
|
8
|
Ranson N, Stromer T, Bousset L, Melki R, Serpell LC. Insights into the architecture of the Ure2p yeast protein assemblies from helical twisted fibrils. Protein Sci 2006; 15:2481-7. [PMID: 17001037 PMCID: PMC2242408 DOI: 10.1110/ps.062215206] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The protein Ure2 from baker's yeast is associated with a heritable and transmissible phenotypic change in the yeast Saccharomyces cerevisiae. Such prion properties are thought to arise from the fact that Ure2p is able to self-assemble into insoluble fibrils. Assemblies of Ure2p are composed of full-length proteins in which the structure of the globular, functional, C-terminal domain is retained. We have carried out structural studies on full-length, wild-type Ure2p fibrils with a regularly twisted morphology. Using electron microscopy and cryo-electron microscopy with image analysis we show high-resolution images of the twisted filaments revealing details within the fibrillar structure. We examine these details in light of recent proposed models and discuss how this new information contributes to an understanding of the architecture of Ure2p yeast prion fibrils.
Collapse
Affiliation(s)
- Neil Ranson
- Astbury Centre for Structural Molecular Biology and Institute for Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | |
Collapse
|