1
|
Woodcock CB, Horton JR, Zhang X, Blumenthal RM, Cheng X. Beta class amino methyltransferases from bacteria to humans: evolution and structural consequences. Nucleic Acids Res 2020; 48:10034-10044. [PMID: 32453412 PMCID: PMC7544214 DOI: 10.1093/nar/gkaa446] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 01/09/2023] Open
Abstract
S-adenosyl-l-methionine dependent methyltransferases catalyze methyl transfers onto a wide variety of target molecules, including DNA and RNA. We discuss a family of methyltransferases, those that act on the amino groups of adenine or cytosine in DNA, have conserved motifs in a particular order in their amino acid sequence, and are referred to as class beta MTases. Members of this class include M.EcoGII and M.EcoP15I from Escherichia coli, Caulobacter crescentus cell cycle-regulated DNA methyltransferase (CcrM), the MTA1-MTA9 complex from the ciliate Oxytricha, and the mammalian MettL3-MettL14 complex. These methyltransferases all generate N6-methyladenine in DNA, with some members having activity on single-stranded DNA as well as RNA. The beta class of methyltransferases has a unique multimeric feature, forming either homo- or hetero-dimers, allowing the enzyme to use division of labor between two subunits in terms of substrate recognition and methylation. We suggest that M.EcoGII may represent an ancestral form of these enzymes, as its activity is independent of the nucleic acid type (RNA or DNA), its strandedness (single or double), and its sequence (aside from the target adenine).
Collapse
Affiliation(s)
- Clayton B Woodcock
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
2
|
Urulangodi M, Dhanaraju R, Gupta K, Roy RP, Bujnicki JM, Rao DN. Asymmetric DNA methylation by dimeric EcoP15I DNA methyltransferase. Biochimie 2016; 128-129:70-82. [PMID: 27422119 DOI: 10.1016/j.biochi.2016.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/11/2016] [Indexed: 11/16/2022]
Abstract
EcoP15I DNA methyltransferase (M.EcoP15I) recognizes short asymmetric sequence, 5'-CAGCAG-3', and methylates the second adenine only on one strand of the double-stranded DNA (dsDNA). In vivo, this methylation is sufficient to protect the host DNA from cleavage by the cognate restriction endonuclease, R.EcoP15I, because of the stringent cleavage specificity requirements. Biochemical and structural characterization support the notion that purified M.EcoP15I exists and functions as dimer. However, the exact role of dimerization in M.EcoP15I reaction mechanism remains elusive. Here we engineered M.EcoP15I to a stable monomeric form and studied the role of dimerization in enzyme catalyzed methylation reaction. While the monomeric form binds single-stranded DNA (ssDNA) containing the recognition sequence it is unable to methylate it. Further we show that, while the monomeric form has AdoMet binding and Mg(2+) binding motifs intact, optimal dsDNA binding required for methylation is dependent on dimerization. Together, our biochemical data supports a unique subunit organization for M.EcoP15I to catalyze the methylation reaction.
Collapse
Affiliation(s)
| | - Rajkumar Dhanaraju
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Kanchan Gupta
- National Institute of Immunology, New Delhi 110 067, India
| | - Rajendra P Roy
- National Institute of Immunology, New Delhi 110 067, India
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, PL-02-109 Warsaw, Poland
| | - Desirazu N Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
3
|
Murphy J, Klumpp J, Mahony J, O'Connell-Motherway M, Nauta A, van Sinderen D. Methyltransferases acquired by lactococcal 936-type phage provide protection against restriction endonuclease activity. BMC Genomics 2014; 15:831. [PMID: 25269955 PMCID: PMC4190342 DOI: 10.1186/1471-2164-15-831] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/24/2014] [Indexed: 02/07/2023] Open
Abstract
Background So-called 936-type phages are among the most frequently isolated phages in dairy facilities utilising Lactococcus lactis starter cultures. Despite extensive efforts to control phage proliferation and decades of research, these phages continue to negatively impact cheese production in terms of the final product quality and consequently, monetary return. Results Whole genome sequencing and in silico analysis of three 936-type phage genomes identified several putative (orphan) methyltransferase (MTase)-encoding genes located within the packaging and replication regions of the genome. Utilising SMRT sequencing, methylome analysis was performed on all three phages, allowing the identification of adenine modifications consistent with N-6 methyladenine sequence methylation, which in some cases could be attributed to these phage-encoded MTases. Heterologous gene expression revealed that M.Phi145I/M.Phi93I and M.Phi93DAM, encoded by genes located within the packaging module, provide protection against the restriction enzymes HphI and DpnII, respectively, representing the first functional MTases identified in members of 936-type phages. Conclusions SMRT sequencing technology enabled the identification of the target motifs of MTases encoded by the genomes of three lytic 936-type phages and these MTases represent the first functional MTases identified in this species of phage. The presence of these MTase-encoding genes on 936-type phage genomes is assumed to represent an adaptive response to circumvent host encoded restriction-modification systems thereby increasing the fitness of the phages in a dynamic dairy environment. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-831) contains supplementary material, which is available to authorized users.
Collapse
|
4
|
Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol Mol Biol Rev 2013; 77:53-72. [PMID: 23471617 PMCID: PMC3591985 DOI: 10.1128/mmbr.00044-12] [Citation(s) in RCA: 405] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Restriction-modification (R-M) systems are ubiquitous and are often considered primitive immune systems in bacteria. Their diversity and prevalence across the prokaryotic kingdom are an indication of their success as a defense mechanism against invading genomes. However, their cellular defense function does not adequately explain the basis for their immaculate specificity in sequence recognition and nonuniform distribution, ranging from none to too many, in diverse species. The present review deals with new developments which provide insights into the roles of these enzymes in other aspects of cellular function. In this review, emphasis is placed on novel hypotheses and various findings that have not yet been dealt with in a critical review. Emerging studies indicate their role in various cellular processes other than host defense, virulence, and even controlling the rate of evolution of the organism. We also discuss how R-M systems could have successfully evolved and be involved in additional cellular portfolios, thereby increasing the relative fitness of their hosts in the population.
Collapse
Affiliation(s)
- Kommireddy Vasu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
5
|
Bonnist EY, Liebert K, Dryden DT, Jeltsch A, Jones AC. Using the fluorescence decay of 2-aminopurine to investigate conformational change in the recognition sequence of the EcoRV DNA-(adenine-N6)-methyltransferase on enzyme binding. Biophys Chem 2012; 160:28-34. [DOI: 10.1016/j.bpc.2011.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/03/2011] [Accepted: 09/04/2011] [Indexed: 10/17/2022]
|
6
|
Banerjee A, Rao DN. Functional analysis of an acid adaptive DNA adenine methyltransferase from Helicobacter pylori 26695. PLoS One 2011; 6:e16810. [PMID: 21347417 PMCID: PMC3036652 DOI: 10.1371/journal.pone.0016810] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 01/13/2011] [Indexed: 11/18/2022] Open
Abstract
HP0593 DNA-(N(6)-adenine)-methyltransferase (HP0593 MTase) is a member of a Type III restriction-modification system in Helicobacter pylori strain 26695. HP0593 MTase has been cloned, overexpressed and purified heterologously in Escherichia coli. The recognition sequence of the purified MTase was determined as 5'-GCAG-3'and the site of methylation was found to be adenine. The activity of HP0593 MTase was found to be optimal at pH 5.5. This is a unique property in context of natural adaptation of H. pylori in its acidic niche. Dot-blot assay using antibodies that react specifically with DNA containing m6A modification confirmed that HP0593 MTase is an adenine-specific MTase. HP0593 MTase occurred as both monomer and dimer in solution as determined by gel-filtration chromatography and chemical-crosslinking studies. The nonlinear dependence of methylation activity on enzyme concentration indicated that more than one molecule of enzyme was required for its activity. Analysis of initial velocity with AdoMet as a substrate showed that two molecules of AdoMet bind to HP0593 MTase, which is the first example in case of Type III MTases. Interestingly, metal ion cofactors such as Co(2+), Mn(2+), and also Mg(2+) stimulated the HP0593 MTase activity. Preincubation and isotope partitioning analyses clearly indicated that HP0593 MTase-DNA complex is catalytically competent, and suggested that DNA binds to the MTase first followed by AdoMet. HP0593 MTase shows a distributive mechanism of methylation on DNA having more than one recognition site. Considering the occurrence of GCAG sequence in the potential promoter regions of physiologically important genes in H. pylori, our results provide impetus for exploring the role of this DNA MTase in the cellular processes of H. pylori.
Collapse
Affiliation(s)
- Arun Banerjee
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Desirazu N. Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
7
|
Madhusoodanan UK, Rao DN. Diversity of DNA methyltransferases that recognize asymmetric target sequences. Crit Rev Biochem Mol Biol 2010; 45:125-45. [PMID: 20184512 DOI: 10.3109/10409231003628007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA methyltransferases (MTases) are a group of enzymes that catalyze the methyl group transfer from S-adenosyl-L-methionine in a sequence-specific manner. Orthodox Type II DNA MTases usually recognize palindromic DNA sequences and add a methyl group to the target base (either adenine or cytosine) on both strands. However, there are a number of MTases that recognize asymmetric target sequences and differ in their subunit organization. In a bacterial cell, after each round of replication, the substrate for any MTase is hemimethylated DNA, and it therefore needs only a single methylation event to restore the fully methylated state. This is in consistent with the fact that most of the DNA MTases studied exist as monomers in solution. Multiple lines of evidence suggest that some DNA MTases function as dimers. Further, functional analysis of many restriction-modification systems showed the presence of more than one or fused MTase genes. It was proposed that presence of two MTases responsible for the recognition and methylation of asymmetric sequences would protect the nascent strands generated during DNA replication from cognate restriction endonuclease. In this review, MTases recognizing asymmetric sequences have been grouped into different subgroups based on their unique properties. Detailed characterization of these unusual MTases would help in better understanding of their specific biological roles and mechanisms of action. The rapid progress made by the genome sequencing of bacteria and archaea may accelerate the identification and study of species- and strain-specific MTases of host-adapted bacteria and their roles in pathogenic mechanisms.
Collapse
|
8
|
Malygin EG, Evdokimov AA, Hattman S. Dimeric/oligomeric DNA methyltransferases: an unfinished story. Biol Chem 2009; 390:835-44. [PMID: 19453271 DOI: 10.1515/bc.2009.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DNA methyltransferases (MTases) are enzymes that carry out post-replicative sequence-specific modifications. The initial experimental data on the structure and kinetic characteristics of the EcoRI MTase led to the paradigm that type II systems comprise dimeric endonucleases and monomeric MTases. In retrospect, this was logical because, while the biological substrate of the restriction endonuclease is two-fold symmetrical, the in vivo substrate for the MTase is generally hemi-methylated and, hence, inherently asymmetric. Thus, the paradigm was extended to include all DNA MTases except the more complex bifunctional type I and type III enzymes. Nevertheless, a gradual enlightenment grew over the last decade that has changed the accepted view on the structure of DNA MTases. These results necessitate a more complex view of the structure and function of these important enzymes.
Collapse
Affiliation(s)
- Ernst G Malygin
- State Research Center of Virology and Biotechnology Vector, Novosibirsk, Russia
| | | | | |
Collapse
|
9
|
Carpenter MA, Bhagwat AS. DNA base flipping by both members of the PspGI restriction-modification system. Nucleic Acids Res 2008; 36:5417-25. [PMID: 18718929 PMCID: PMC2532716 DOI: 10.1093/nar/gkn528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The PspGI restriction–modification system recognizes the sequence CCWGG. R.PspGI cuts DNA before the first C in the cognate sequence and M.PspGI is thought to methylate N4 of one of the cytosines in the sequence. M.PspGI enhances fluorescence of 2-aminopurine in DNA if it replaces the second C in the sequence, while R.PspGI enhances fluorescence when the fluorophore replaces adenine in the central base pair. This strongly suggests that the methyltransferase flips the second C in the recognition sequence, while the endonuclease flips both bases in the central base pair out of the duplex. M.PspGI is the first N4-cytosine MTase for which biochemical evidence for base flipping has been presented. It is also the first type IIP methyltransferase whose catalytic activity is strongly stimulated by divalent metal ions. However, divalent metal ions are not required for its base-flipping activity. In contrast, these ions are required for both base flipping and catalysis by the endonuclease. The two enzymes have similar temperature profiles for base flipping and optimal flipping occurs at temperatures substantially below the growth temperature of the source organism for PspGI and for the catalytic activity of endonuclease. We discuss the implications of these results for DNA binding by these enzymes and their evolutionary origin.
Collapse
Affiliation(s)
- Michael A Carpenter
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | | |
Collapse
|
10
|
Wood RJ, Maynard-Smith MD, Robinson VL, Oyston PC, Titball RW, Roach PL. Kinetic analysis of Yersinia pestis DNA adenine methyltransferase activity using a hemimethylated molecular break light oligonucleotide. PLoS One 2007; 2:e801. [PMID: 17726531 PMCID: PMC1949145 DOI: 10.1371/journal.pone.0000801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 08/05/2007] [Indexed: 11/19/2022] Open
Abstract
Background DNA adenine methylation plays an important role in several critical bacterial processes including mismatch repair, the timing of DNA replication and the transcriptional control of gene expression. The dependence of bacterial virulence on DNA adenine methyltransferase (Dam) has led to the proposal that selective Dam inhibitors might function as broad spectrum antibiotics. Methodology/Principal Findings Herein we report the expression and purification of Yersinia pestis Dam and the development of a continuous fluorescence based assay for DNA adenine methyltransferase activity that is suitable for determining the kinetic parameters of the enzyme and for high throughput screening against potential Dam inhibitors. The assay utilised a hemimethylated break light oligonucleotide substrate containing a GATC methylation site. When this substrate was fully methylated by Dam, it became a substrate for the restriction enzyme DpnI, resulting in separation of fluorophore (fluorescein) and quencher (dabcyl) and therefore an increase in fluorescence. The assays were monitored in real time using a fluorescence microplate reader in 96 well format and were used for the kinetic characterisation of Yersinia pestis Dam, its substrates and the known Dam inhibitor, S-adenosylhomocysteine. The assay has been validated for high throughput screening, giving a Z-factor of 0.71±0.07 indicating that it is a sensitive assay for the identification of inhibitors. Conclusions/Significance The assay is therefore suitable for high throughput screening for inhibitors of DNA adenine methyltransferases and the kinetic characterisation of the inhibition.
Collapse
Affiliation(s)
- Robert J. Wood
- School of Chemistry, University of Southampton, Southampton, United Kingdom
- * To whom correspondence should be addressed. E-mail: (RW); (PR)
| | | | - Victoria L. Robinson
- Chemical and Biological Sciences, Defence Science and Technology Laboratory, Salisbury, United Kingdom
| | - Petra C.F. Oyston
- Chemical and Biological Sciences, Defence Science and Technology Laboratory, Salisbury, United Kingdom
| | - Rick W. Titball
- Chemical and Biological Sciences, Defence Science and Technology Laboratory, Salisbury, United Kingdom
| | - Peter L. Roach
- School of Chemistry, University of Southampton, Southampton, United Kingdom
- * To whom correspondence should be addressed. E-mail: (RW); (PR)
| |
Collapse
|
11
|
Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases. BMC Bioinformatics 2007; 8:73. [PMID: 17338813 PMCID: PMC1829167 DOI: 10.1186/1471-2105-8-73] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 03/05/2007] [Indexed: 11/29/2022] Open
Abstract
Background SPOUT methyltransferases (MTases) are a large class of S-adenosyl-L-methionine-dependent enzymes that exhibit an unusual alpha/beta fold with a very deep topological knot. In 2001, when no crystal structures were available for any of these proteins, Anantharaman, Koonin, and Aravind identified homology between SpoU and TrmD MTases and defined the SPOUT superfamily. Since then, multiple crystal structures of knotted MTases have been solved and numerous new homologous sequences appeared in the databases. However, no comprehensive comparative analysis of these proteins has been carried out to classify them based on structural and evolutionary criteria and to guide functional predictions. Results We carried out extensive searches of databases of protein structures and sequences to collect all members of previously identified SPOUT MTases, and to identify previously unknown homologs. Based on sequence clustering, characterization of domain architecture, structure predictions and sequence/structure comparisons, we re-defined families within the SPOUT superfamily and predicted putative active sites and biochemical functions for the so far uncharacterized members. We have also delineated the common core of SPOUT MTases and inferred a multiple sequence alignment for the conserved knot region, from which we calculated the phylogenetic tree of the superfamily. We have also studied phylogenetic distribution of different families, and used this information to infer the evolutionary history of the SPOUT superfamily. Conclusion We present the first phylogenetic tree of the SPOUT superfamily since it was defined, together with a new scheme for its classification, and discussion about conservation of sequence and structure in different families, and their functional implications. We identified four protein families as new members of the SPOUT superfamily. Three of these families are functionally uncharacterized (COG1772, COG1901, and COG4080), and one (COG1756 represented by Nep1p) has been already implicated in RNA metabolism, but its biochemical function has been unknown. Based on the inference of orthologous and paralogous relationships between all SPOUT families we propose that the Last Universal Common Ancestor (LUCA) of all extant organisms contained at least three SPOUT members, ancestors of contemporary RNA MTases that carry out m1G, m3U, and 2'O-ribose methylation, respectively. In this work we also speculate on the origin of the knot and propose possible 'unknotted' ancestors. The results of our analysis provide a comprehensive 'roadmap' for experimental characterization of SPOUT MTases and interpretation of functional studies in the light of sequence-structure relationships.
Collapse
|
12
|
Bheemanaik S, Reddy Y, Rao D. Structure, function and mechanism of exocyclic DNA methyltransferases. Biochem J 2006; 399:177-90. [PMID: 16987108 PMCID: PMC1609917 DOI: 10.1042/bj20060854] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA MTases (methyltransferases) catalyse the transfer of methyl groups to DNA from AdoMet (S-adenosyl-L-methionine) producing AdoHcy (S-adenosyl-L-homocysteine) and methylated DNA. The C5 and N4 positions of cytosine and N6 position of adenine are the target sites for methylation. All three methylation patterns are found in prokaryotes, whereas cytosine at the C5 position is the only methylation reaction that is known to occur in eukaryotes. In general, MTases are two-domain proteins comprising one large and one small domain with the DNA-binding cleft located at the domain interface. The striking feature of all the structurally characterized DNA MTases is that they share a common core structure referred to as an 'AdoMet-dependent MTase fold'. DNA methylation has been reported to be essential for bacterial virulence, and it has been suggested that DNA adenine MTases (Dams) could be potential targets for both vaccines and antimicrobials. Drugs that block Dam could slow down bacterial growth and therefore drug-design initiatives could result in a whole new generation of antibiotics. The transfer of larger chemical entities in a MTase-catalysed reaction has been reported and this represents an interesting challenge for bio-organic chemists. In general, amino MTases could therefore be used as delivery systems for fluorescent or other reporter groups on to DNA. This is one of the potential applications of DNA MTases towards developing non-radioactive DNA probes and these could have interesting applications in molecular biology. Being nucleotide-sequence-specific, DNA MTases provide excellent model systems for studies on protein-DNA interactions. The focus of this review is on the chemistry, enzymology and structural aspects of exocyclic amino MTases.
Collapse
Affiliation(s)
| | - Yeturu V. R. Reddy
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Desirazu N. Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
- To whom correspondence should be addressed (email )
| |
Collapse
|