1
|
Bondada V, Gal J, Mashburn C, Rodgers DW, Larochelle KE, Croall DE, Geddes JW. The C2 domain of calpain 5 contributes to enzyme activation and membrane localization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119019. [PMID: 33811937 DOI: 10.1016/j.bbamcr.2021.119019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/28/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
The enzymatic characteristics of the ubiquitous calpain 5 (CAPN5) remain undescribed despite its high expression in the central nervous system and links to eye development and disease. CAPN5 contains the typical protease core domains but lacks the C terminal penta-EF hand domain of classical calpains, and instead contains a putative C2 domain. This study used the SH-SY5Y neuroblastoma cell line stably transfected with CAPN5-3xFLAG variants to assess the potential roles of the CAPN5 C2 domain in Ca2+ regulated enzyme activity and intracellular localization. Calcium dependent autoproteolysis of CAPN5 was documented and characterized. Mutation of the catalytic Cys81 to Ala or addition of EGTA prevented autolysis. Eighty μM Ca2+ was sufficient to stimulate half-maximal CAPN5 autolysis in cellular lysates. CAPN5 autolysis was inhibited by tri-leucine peptidyl aldehydes, but less effectively by di-Leu aldehydes, consistent with a more open conformation of the protease core relative to classical calpains. In silico modeling revealed a type II topology C2 domain including loops with the potential to bind calcium. Mutation of the acidic amino acid residues predicted to participate in Ca2+ binding, particularly Asp531 and Asp589, resulted in a decrease of CAPN5 membrane association. These residues were also found to be invariant in several genomes. The autolytic fragment of CAPN5 was prevalent in membrane-enriched fractions, but not in cytosolic fractions, suggesting that membrane association facilitates the autoproteolytic activity of CAPN5. Together, these results demonstrate that CAPN5 undergoes Ca2+-activated autoproteolytic processing and suggest that CAPN5 association with membranes enhances CAPN5 autolysis.
Collapse
Affiliation(s)
- Vimala Bondada
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jozsef Gal
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Charles Mashburn
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - David W Rodgers
- Department of Molecular and Cellular Biochemistry, Center for Structural Biology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Dorothy E Croall
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME, USA
| | - James W Geddes
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
2
|
Llorens F, Thüne K, Sikorska B, Schmitz M, Tahir W, Fernández-Borges N, Cramm M, Gotzmann N, Carmona M, Streichenberger N, Michel U, Zafar S, Schuetz AL, Rajput A, Andréoletti O, Bonn S, Fischer A, Liberski PP, Torres JM, Ferrer I, Zerr I. Altered Ca 2+ homeostasis induces Calpain-Cathepsin axis activation in sporadic Creutzfeldt-Jakob disease. Acta Neuropathol Commun 2017; 5:35. [PMID: 28449707 PMCID: PMC5408381 DOI: 10.1186/s40478-017-0431-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 12/25/2022] Open
Abstract
Sporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent form of human prion disease and it is characterized by the presence of neuronal loss, spongiform degeneration, chronic inflammation and the accumulation of misfolded and pathogenic prion protein (PrPSc). The molecular mechanisms underlying these alterations are largely unknown, but the presence of intracellular neuronal calcium (Ca2+) overload, a general feature in models of prion diseases, is suggested to play a key role in prion pathogenesis. Here we describe the presence of massive regulation of Ca2+ responsive genes in sCJD brain tissue, accompanied by two Ca2+-dependent processes: endoplasmic reticulum stress and the activation of the cysteine proteases Calpains 1/2. Pathogenic Calpain proteins activation in sCJD is linked to the cleavage of their cellular substrates, impaired autophagy and lysosomal damage, which is partially reversed by Calpain inhibition in a cellular prion model. Additionally, Calpain 1 treatment enhances seeding activity of PrPSc in a prion conversion assay. Neuronal lysosomal impairment caused by Calpain over activation leads to the release of the lysosomal protease Cathepsin S that in sCJD mainly localises in axons, although massive Cathepsin S overexpression is detected in microglial cells. Alterations in Ca2+ homeostasis and activation of Calpain-Cathepsin axis already occur at pre-clinical stages of the disease as detected in a humanized sCJD mouse model. Altogether our work indicates that unbalanced Calpain-Cathepsin activation is a relevant contributor to the pathogenesis of sCJD at multiple molecular levels and a potential target for therapeutic intervention.
Collapse
|
3
|
Zhang Y, Liu NM, Wang Y, Youn JY, Cai H. Endothelial cell calpain as a critical modulator of angiogenesis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1326-1335. [PMID: 28366876 DOI: 10.1016/j.bbadis.2017.03.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/04/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
Calpains are a family of calcium-dependent non-lysosomal cysteine proteases. In particular, calpains residing in the endothelial cells play important roles in angiogenesis. It has been shown that calpain activity can be increased in endothelial cells by growth factors, primarily vascular endothelial growth factor (VEGF). VEGF/VEGFR2 induces calpain 2 dependent activation of PI3K/AMPK/Akt/eNOS pathway, and consequent nitric oxide production and physiological angiogenesis. Under pathological conditions such as tumor angiogenesis, endothelial calpains can be activated by hypoxia. This review focuses on the molecular regulatory mechanisms of calpain activation, and the newly identified mechanistic roles and downstream signaling events of calpains in physiological angiogenesis, and in the conditions of pathological tumor angiogenesis and diabetic wound healing, as well as retinopathy and atherosclerosis that are also associated with an increase in calpain activity. Further discussed include the differential strategies of modulating angiogenesis through manipulating calpain expression/activity in different pathological settings. Targeted limitation of angiogenesis in cancer and targeted promotion of angiogenesis in diabetic wound healing via modulations of calpains and calpain-dependent signaling mechanisms are of significant translational potential. Emerging strategies of tissue-specific targeting, environment-dependent targeting, and genome-targeted editing may turn out to be effective regimens for targeted manipulation of angiogenesis through calpain pathways, for differential treatments including both attenuation of tumor angiogenesis and potentiation of diabetic angiogenesis.
Collapse
Affiliation(s)
- Yixuan Zhang
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA; Division of Cardiology, Department Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA
| | - Norika Mengchia Liu
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA; Division of Cardiology, Department Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA
| | - Yongchen Wang
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA; Division of Cardiology, Department Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA
| | - Ji Youn Youn
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA; Division of Cardiology, Department Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA
| | - Hua Cai
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA; Division of Cardiology, Department Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA.
| |
Collapse
|
4
|
Low KE, Karunan Partha S, Davies PL, Campbell RL. Allosteric inhibitors of calpains: Reevaluating inhibition by PD150606 and LSEAL. Biochim Biophys Acta Gen Subj 2014; 1840:3367-73. [PMID: 25196359 DOI: 10.1016/j.bbagen.2014.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND The mercaptoacrylate calpain inhibitor, PD150606, has been shown by X-ray crystallography to bind to a hydrophobic groove in the enzyme's penta-EF-hand domains far away from the catalytic cleft and has been previously described as an uncompetitive inhibitor of calpains. The penta-peptide LSEAL has been reported to be an inhibitor of calpain and was predicted to bind in the same hydrophobic groove. The X-ray crystal structure of calpain-2 bound to its endogenous calpain inhibitor, calpastatin, shows that calpastatin also binds to the hydrophobic grooves in the two penta-EF-hand domains, but its inhibitory domain binds to the protease core domains and blocks the active site cleft directly. METHODS The mechanisms of inhibition by PD150606 and LSEAL were investigated using steady-state kinetics of cleavage of a fluorogenic substrate by calpain-2 and the protease core of calpain1, as well as by examining the inhibition of casein hydrolysis by calpain and the autoproteolysis of calpain. RESULTS PD150606 inhibits both full-length calpain-2 and the protease core of calpain-1 with an apparent noncompetitive kinetic model. The penta-peptide LSEAL failed to inhibit either whole calpain or its protease core in vitro. CONCLUSIONS PD150606 cannot inhibit cleavage by calpain-2 of small substrates via binding to the penta-EF-hand domain. GENERAL SIGNIFICANCE PD150606 is often described as a calpain-specific inhibitor due to its ability to target the penta-EF-hand domains of calpain, but we show that it must be acting at a site on the protease core domain instead.
Collapse
Affiliation(s)
- Kristin E Low
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Sarathy Karunan Partha
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Robert L Campbell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
5
|
Increased membrane cholesterol might render mature hippocampal neurons more susceptible to beta-amyloid-induced calpain activation and tau toxicity. J Neurosci 2009; 29:4640-51. [PMID: 19357288 DOI: 10.1523/jneurosci.0862-09.2009] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A growing body of evidence suggests that beta-amyloid (Abeta), the main component of senile plaques, induces abnormal posttranslational processing of the microtubule-associated protein tau. We have recently described that, in addition to increasing tau phosphorylation, Abeta enhanced calpain activity leading to the generation of a toxic 17 kDa tau fragment in cultured hippocampal neurons. How aging, the greatest Alzheimer's disease (AD) risk factor, might regulate this proteolytic event remains unknown. In this study, we assessed the susceptibility of cultured hippocampal neurons to Abeta-dependent 17 kDa tau production at different developmental stages. Our results revealed that mature neurons were more susceptible to Abeta-induced calpain activation leading to the generation of this fragment than young neurons. In addition, the production of this fragment correlated with a decrease in cell viability in mature hippocampal neurons. Second, we determined whether membrane cholesterol, a suspect player in AD, might mediate these age-dependent differences in Abeta-induced calpain activation. Filipin staining and an Amplex Red cholesterol assay showed that mature neuron membrane cholesterol levels were significantly higher than those detected in young ones. Furthermore, decreasing membrane cholesterol in mature neurons reduced their susceptibility to Abeta-dependent calpain activation, 17 kDa tau production, and cell death, whereas increasing membrane cholesterol in young neurons enhanced these Abeta-mediated cellular processes. Finally, fura-2 calcium imaging indicated that membrane cholesterol alterations might change the vulnerability of cells to Abeta insult by altering calcium influx. Together these data suggested a potential role of cholesterol in linking aging to Abeta-induced tau proteolysis in the context of AD.
Collapse
|
6
|
Russo I, Oksman A, Goldberg DE. Fatty acid acylation regulates trafficking of the unusual Plasmodium falciparum calpain to the nucleolus. Mol Microbiol 2009; 72:229-45. [PMID: 19239622 PMCID: PMC2746569 DOI: 10.1111/j.1365-2958.2009.06639.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Plasmodium falciparum genome encodes a single calpain. By generating P. falciparum clones expressing C-terminally tagged calpain, we localized this protein to the nucleolus. Pf_calpain possesses an unusual and long N-terminal domain in which we identified three subregions that are highly conserved among Plasmodium species. Two have putative targeting signals: a myristoylation motif and a nuclear localization sequence. We assessed their functionality. Our data show that the nuclear localization sequence is an active nuclear import motif that contains an embedded signal conferring nucleolar localization on various chimeras. The N-terminus is myristoylated at Gly2 and palmitoylated at Cys3 and Cys22. Palmitoylation status has an important role in dictating P. falciparum calpain localization. The targeting signals function in mammalian cells as well as in the parasite. P. falciparum calpain is a unique nucleolar protein with an interesting mechanism of targeting.
Collapse
Affiliation(s)
- Ilaria Russo
- Howard Hughes Medical Institute, Washington University School of Medicine, Department of Molecular Microbiology, St Louis, Missouri 63110, USA
| | | | | |
Collapse
|
7
|
Darnell GA, Schroder WA, Antalis TM, Lambley E, Major L, Gardner J, Birrell G, Cid-Arregui A, Suhrbier A. Human Papillomavirus E7 Requires the Protease Calpain to Degrade the Retinoblastoma Protein. J Biol Chem 2007; 282:37492-500. [DOI: 10.1074/jbc.m706860200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
8
|
Leloup L, Daury L, Mazères G, Cottin P, Brustis JJ. Involvement of the ERK/MAP kinase signalling pathway in milli-calpain activation and myogenic cell migration. Int J Biochem Cell Biol 2007; 39:1177-89. [PMID: 17433758 DOI: 10.1016/j.biocel.2007.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 03/05/2007] [Accepted: 03/08/2007] [Indexed: 10/23/2022]
Abstract
Recent research carried out in our laboratory has shown that IGF-1, TGF-beta1, and insulin were able to strongly stimulate myoblast migration by increasing milli-calpain expression and activity. However, the signalling pathways involved in these phenomena remain unknown. The aim of this study was to identify the signalling pathway(s) responsible for the effects of IGF-1, TGF-beta1, and insulin on myoblast migration and on milli-calpain expression and activity. For this purpose, wound healing assays were carried out in the presence of growth factors with or without specific inhibitors of ERK/MAP kinase and PI3K/Akt pathways. The results clearly showed that the inhibition of the ERK/MAP kinase pathway prevents the effects of growth factors on myoblast migration. Secondly, the expression and the activity of milli-calpain were studied in cells treated with growth factor, alone or with ERK/MAP kinase inhibitor. The results demonstrated that the up-regulation of milli-calpain expression and activity was mediated by the ERK/MAP kinase pathway. Finally, the possible implication of MyoD and myogenin, myogenic regulatory factors able to regulate milli-calpain expression, was studied. Taken together our results clearly showed that the ERK/MAP kinase signalling pathway is responsible for the effects of the three growth factors on myoblast migration and on milli-calpain expression and activity. On the opposite, the PI3K/Akt signalling pathway, MyoD and myogenin seem to be not implicated in these phenomena.
Collapse
Affiliation(s)
- Ludovic Leloup
- Université Bordeaux 1, Unité Protéolyse, Croissance et Développement Musculaire, INRA USC-2009, ISTAB, avenue des Facultés, 33405 Talence Cedex, France.
| | | | | | | | | |
Collapse
|
9
|
Rich RL, Myszka DG. Survey of the year 2006 commercial optical biosensor literature. J Mol Recognit 2007; 20:300-66. [DOI: 10.1002/jmr.862] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|