1
|
Di Meo A, Wang C, Cheng Y, Diamandis EP, Yousef GM. The miRNA-kallikrein interaction: a mosaic of epigenetic regulation in cancer. Biol Chem 2019; 399:973-982. [PMID: 29604203 DOI: 10.1515/hsz-2018-0112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/26/2018] [Indexed: 12/28/2022]
Abstract
The kallikrein-related peptidases (KLKs) constitute a family of 15 highly conserved serine proteases with trypsin- and chymotrypsin-like activities. Dysregulated expression and/or aberrant activation of KLKs has been linked to various pathophysiological processes, including cancer. Many KLKs have been identified as potential cancer biomarkers. microRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression by pairing to the 3' untranslated region (UTR) of complimentary mRNA targets. miRNAs are dysregulated in many cancers, including prostate, kidney and ovarian cancers. Several studies have shown that miRNAs are involved in the post-transcriptional regulation of KLKs. However, recent evidence suggests that miRNAs can also act as downstream effectors of KLKs. In this review, we provide an update on the epigenetic regulation of KLKs by miRNAs. We also present recent experimental evidence that supports the regulatory role of KLKs on miRNA networks. The potential diagnostic and therapeutic applications of miRNA-kallikrein interactions are also discussed.
Collapse
Affiliation(s)
- Ashley Di Meo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada
| | - Cong Wang
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada
| | - George M Yousef
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada
| |
Collapse
|
2
|
Masurier N, Arama DP, El Amri C, Lisowski V. Inhibitors of kallikrein-related peptidases: An overview. Med Res Rev 2017; 38:655-683. [DOI: 10.1002/med.21451] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/24/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Nicolas Masurier
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS; Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques; Montpellier Cedex France
| | - Dominique P. Arama
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS; Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques; Montpellier Cedex France
| | - Chahrazade El Amri
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256; Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology; Paris France
| | - Vincent Lisowski
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS; Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques; Montpellier Cedex France
| |
Collapse
|
3
|
Leite KRM, Morais DR, Florez MG, Reis ST, Iscaife A, Viana N, Moura CM, Silva IA, Katz BS, Pontes J, Nesrallah A, Srougi M. The role of microRNAs 371 and 34a in androgen receptor control influencing prostate cancer behavior. Urol Oncol 2015; 33:267.e15-22. [PMID: 25920548 DOI: 10.1016/j.urolonc.2015.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 02/24/2015] [Accepted: 03/02/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND The molecular mechanisms involved in androgen receptor (AR) signaling pathways are not completely understood, and deregulation of microRNAs (miRNAs) expression may play a role in prostate cancer (PC) development and progression. METHODS The expression levels of miRNA and AR were evaluated with quantitative real-time polymerase chain reaction using frozen tissue from the surgical specimens of 83 patients submitted to radical prostatectomy. The expression level of miRNAs was correlated with prognostic factors and biochemical recurrence during a follow-up period of 45 months. In vitro and in vivo experiments were performed to understand the effect of miRNAs over AR in the context of that seen in a PC model. RESULTS MiR-371 underexpression correlated with non-organ-confined (pT3) disease (P = 0.009). In vitro transfection of miR-371 reduced the levels of AR by 22% and 28% in LNCaP and PC3 cell lines, respectively, and in kallikrein 3, it was reduced by 51%. PC was induced in Balb/c mice using PC-3M-luc-C6 cells, and animals were treated with 3 local doses of miR-371. Tumor growth evaluated by in vivo imaging after luciferase injection was slower in animals treated with miR-371. To explore further the possible role of miRNAs in the AR pathway, LNCaP cell line was treated with 5α-dihydrotestosterone and flutamide showing alteration in miRNAs expression, especially miR-34a, which was significantly underexpressed after treatment with high doses of 5α-dihydrotestosterone. CONCLUSION Our data support a role for miRNAs, especially miR-371 and miR-34a, in the complex disarrangement of AR signaling pathway and in the behavior of PC.
Collapse
Affiliation(s)
- Katia R M Leite
- Laboratory of Medical Research, Department of Urology, LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil.
| | - Denis Reis Morais
- Laboratory of Medical Research, Department of Urology, LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Manuel Garcia Florez
- Laboratory of Medical Research, Department of Urology, LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Sabrina T Reis
- Laboratory of Medical Research, Department of Urology, LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Alexandre Iscaife
- Laboratory of Medical Research, Department of Urology, LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Nayara Viana
- Laboratory of Medical Research, Department of Urology, LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Caio M Moura
- Laboratory of Medical Research, Department of Urology, LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Iran A Silva
- Laboratory of Medical Research, Department of Urology, LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Betina S Katz
- Laboratory of Medical Research, Department of Urology, LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Jose Pontes
- Laboratory of Medical Research, Department of Urology, LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Adriano Nesrallah
- Laboratory of Medical Research, Department of Urology, LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Miguel Srougi
- Laboratory of Medical Research, Department of Urology, LIM55, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
4
|
Cereda V, Formica V, Menghi A, Pellicori S, Roselli M. Kallikrein-related peptidases targeted therapies in prostate cancer: perspectives and challenges. Expert Opin Investig Drugs 2015; 24:929-47. [PMID: 25858813 DOI: 10.1517/13543784.2015.1035708] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Despite the emergence of several new effective treatments for metastatic castration-resistant prostate cancer patients, disease progression inevitably occurs, leading scientific community to carefully look for novel therapeutic targets of prostate cancer. Kallikrein (KLK)-related peptidases have been demonstrated to facilitate prostate tumorigenesis and disease progression through the development of an oncogenic microenvironment for prostate cells. AREAS COVERED This review first summarizes the large amount of preclinical data showing the involvement of KLKs in prostate cancer pathobiology. In the second part, the authors assess the current status and future directions for KLK-targeted therapy and briefly describe the advances and challenges implicated in the design of effective manufactured drugs. The authors then focus on the preclinical data and on Phase I/II studies of the most promising KLK-targeted agents in prostate cancer. The drugs discussed here are divided on the basis of their mechanism of action: KLK-engineered inhibitors; KLK-activated pro-drugs; KLK-targeted microRNAs and small interfering RNAs(-/)small hairpin RNAs; KLK vaccines and antibodies. EXPERT OPINION Targeting KLK expression and/or activity could be a promising direction in prostate cancer treatment. Future human clinical trials will help us to evaluate the real benefits, toxicities and the consequent optimal use of KLK-targeted drugs, as mono-therapy or in combination regimens.
Collapse
Affiliation(s)
- Vittore Cereda
- 1 University of Rome Tor Vergata, Tor Vergata University Clinical Center, Department of Systems Medicine, Medical Oncology , Viale Oxford 81, 00133 Rome , Italy +39 0620908190 ; +39 0620903504 ;
| | | | | | | | | |
Collapse
|
5
|
Michaelidou K, Kladi-Skandali A, Scorilas A. Kallikreins as Biomarkers in Human Malignancies. BIOMARKERS IN CANCER 2015. [DOI: 10.1007/978-94-007-7681-4_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Dorn J, Beaufort N, Schmitt M, Diamandis EP, Goettig P, Magdolen V. Function and clinical relevance of kallikrein-related peptidases and other serine proteases in gynecological cancers. Crit Rev Clin Lab Sci 2014; 51:63-84. [PMID: 24490956 DOI: 10.3109/10408363.2013.865701] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gynecological cancers, including malignant tumors of the ovaries, the endometrium and the cervix, account for approximately 10% of tumor-associated deaths in women of the Western world. For screening, diagnosis, prognosis, and therapy response prediction, the group of enzymes known as serine (Ser-)proteases show great promise as biomarkers. In the present review, following a summary of the clinical facts regarding malignant tumors of the ovaries, the endometrium and the cervix, and characterization of the most important Ser-proteases, we thoroughly review the current state of knowledge relating to the use of proteases as biomarkers of the most frequent gynecological cancers. Within the Ser-protease group, the kallikrein-related peptidase (KLK) family, which encompasses a subgroup of 15 members, holds particular promise, with some acting via a tumor-promoting mechanism and others behaving as protective factors. Further, the urokinase-type plasminogen activator (uPA) and its inhibitor PAI-1 (plasminogen activator inhibitor-1) seem to play an unfavorable role in gynecological tumors, while down-regulation of high-temperature requirement proteins A 1, 2 and 3 (HtrA1,2,3) is associated with malignant disease and cancer progression. Expression/activity levels of other Ser-proteases, including the type II transmembrane Ser-proteases (TTSPs) matriptase, hepsin (TMPRSS1), and the hepsin-related protease (TMPRSS3), as well as the glycosyl-phosphatidylinositol (GPI)-anchored Ser-proteases prostasin and testisin, may be of clinical relevance in gynecological cancers. In conclusion, proteases are a rich source of biomarkers of gynecological cancer, though the enzymes' exact roles and functions merit further investigation.
Collapse
Affiliation(s)
- Julia Dorn
- Klinische Forschergruppe der Frauenklinik der Technischen Universität München, Klinikum rechts der Isar , Munich , Germany
| | | | | | | | | | | |
Collapse
|
7
|
Shinmei S, Sakamoto N, Goto K, Sentani K, Anami K, Hayashi T, Teishima J, Matsubara A, Oue N, Kitadai Y, Yasui W. MicroRNA-155 is a predictive marker for survival in patients with clear cell renal cell carcinoma. Int J Urol 2012; 20:468-77. [DOI: 10.1111/j.1442-2042.2012.03182.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 09/05/2012] [Indexed: 12/29/2022]
Affiliation(s)
| | - Naoya Sakamoto
- Department of Molecular Pathology; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima; Japan
| | | | - Kazuhiro Sentani
- Department of Molecular Pathology; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima; Japan
| | - Katsuhiro Anami
- Department of Molecular Pathology; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima; Japan
| | - Tetsutaro Hayashi
- Department of Urology; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima; Japan
| | - Jun Teishima
- Department of Urology; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima; Japan
| | - Akio Matsubara
- Department of Urology; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima; Japan
| | - Naohide Oue
- Department of Molecular Pathology; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima; Japan
| | - Yasuhiko Kitadai
- Medicine and Molecular Science; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima; Japan
| | - Wataru Yasui
- Department of Molecular Pathology; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima; Japan
| |
Collapse
|
8
|
Bayani J, Diamandis EP. The physiology and pathobiology of human kallikrein-related peptidase 6 (KLK6). Clin Chem Lab Med 2011; 50:211-33. [PMID: 22047144 DOI: 10.1515/cclm.2011.750] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 09/21/2011] [Indexed: 12/11/2022]
Abstract
The human kallikrein-related peptidase 6 (KLK6) gene belongs to the 15-member kallikrein (KLK) gene family mapping to chromosome 19q13.3-13.4. Encoding for an enzyme with trypsin-like properties, KLK6 can degrade components of the extracellular matrix. The successful utilisation of another KLK member (KLK3/PSA) for prostate cancer diagnosis has led many to evaluate KLK6 as a potential biomarker for other cancer and diseased states. The observed dysregulated expression in cancers, neurodegenerative diseases and skin conditions has led to the discovery that KLK6 participates in other cellular pathways including inflammation, receptor activation and regulation of apoptosis. Moreover, the improvements in high-throughput genomics have not only enabled the identification of sequence polymorphisms, but of transcript variants, whose functional significances have yet to be realised. This comprehensive review will summarise the current findings of KLK6 pathophysiology and discuss its potential as a viable biomarker.
Collapse
Affiliation(s)
- Jane Bayani
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
9
|
White NM, Bao TT, Grigull J, Youssef YM, Girgis A, Diamandis M, Fatoohi E, Metias M, Honey RJ, Stewart R, Pace KT, Bjarnason GA, Yousef GM. miRNA Profiling for Clear Cell Renal Cell Carcinoma: Biomarker Discovery and Identification of Potential Controls and Consequences of miRNA Dysregulation. J Urol 2011; 186:1077-83. [DOI: 10.1016/j.juro.2011.04.110] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Indexed: 12/13/2022]
Affiliation(s)
- Nicole M.A. White
- Department of Laboratory Medicine and the Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Tian Tian Bao
- Department of Laboratory Medicine and the Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Jörg Grigull
- Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada
| | - Youssef M. Youssef
- Department of Laboratory Medicine and the Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Andrew Girgis
- Department of Laboratory Medicine and the Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Maria Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Eman Fatoohi
- Department of Laboratory Medicine and the Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Maged Metias
- Department of Laboratory Medicine and the Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - R. John Honey
- Department of Urology, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Robert Stewart
- Department of Urology, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kenneth T. Pace
- Department of Urology, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Georg A. Bjarnason
- Division of Medical Oncology and Hematology, Sunnybrook Odette Cancer Center, Toronto, Ontario, Canada
| | - George M. Yousef
- Department of Laboratory Medicine and the Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Wang R, Wang ZX, Yang JS, Pan X, De W, Chen LB. MicroRNA-451 functions as a tumor suppressor in human non-small cell lung cancer by targeting ras-related protein 14 (RAB14). Oncogene 2011; 30:2644-58. [PMID: 21358675 DOI: 10.1038/onc.2010.642] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accumulating evidence suggests that microRNAs (miRNAs) are important gene regulators, which can have critical roles in diverse biological processes including tumorigenesis. In this study, we analyzed the miRNA expression profiles in non-small cell lung carcinoma (NSCLC) by use of a miRNA microarray platform and identified 40 differentially expressed miRNAs. We showed that miRNA (miR)-451 was the most downregulated in NSCLC tissues. The expression level of miR-451 was found to be significantly correlated with tumor differentiation, pathological stage and lymph-node metastasis. Moreover, low miR-451 expression level was also correlated with shorter overall survival of NSCLC patients (P<0.001). Ectopic miR-451 expression significantly suppressed the in vitro proliferation and colony formation of NSCLC cells and the development of tumors in nude mice by enhancing apoptosis, which might be associated with inactivation of Akt signaling pathway. Interestingly, ectopic miR-451 expression could significantly inhibit RAB14 protein expression and decrease a luciferase-reporter activity containing the RAB14 3'-untranslated region (UTR). In addition,, RNA interference silencing of RAB14 gene could recapitulate the tumor suppressor function of miR-451, whereas restoration of RAB14 expression could partially attenuate the tumor suppressor function of miR-451 in NSCLC cells. Furthermore, we also showed that strong positive immunoreactivity of RAB14 protein was significantly associated with downregulation of miR-451 (P=0.01). These findings suggest that miR-451 regulates survival of NSCLC cells partially through the downregulation of RAB14. Therefore, targeting with the miR-451/RAB14 interaction might serve as a novel therapeutic application to treat NSCLC patients.
Collapse
Affiliation(s)
- R Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that regulate protein expression. Aberrant miRNA expression in cancer has been well documented; miRNAs can act as oncogenes or tumor-suppressor genes, depending on the cellular context and target genes that they regulate, and are involved in tumor progression and metastasis. The potential mechanisms by which miRNAs are involved in tumor aggressiveness include migration, invasion, cell proliferation, epithelial-to-mesenchymal transition, angiogenesis and apoptosis. MiRNAs are involved in various cellular pathways and an miRNA can elicit more than one biological effect in a given cell. Existing data show the potential clinical utility of miRNAs as prognostic and predictive markers for aggressive and metastatic cancers. The stability of miRNAs in formalin-fixed, paraffin-embedded tissues and body fluids is advantageous for biomarker discovery and validation. In addition, miRNAs can be extracted from small biopsy specimens, which is a further advantage. Finally, miRNAs are potential therapeutic agents for personalized cancer management.
Collapse
|
12
|
Ricciardelli C, Bianco-Miotto T, Jindal S, Dodd TJ, Cohen PA, Marshall VR, Sutherland PD, Samaratunga H, Kench JG, Dong Y, Wang H, Clements JA, Risbridger GP, Sutherland RL, Tilley WD, Horsfall DJ. Comparative biomarker expression and RNA integrity in biospecimens derived from radical retropubic and robot-assisted laparoscopic prostatectomies. Cancer Epidemiol Biomarkers Prev 2010; 19:1755-65. [PMID: 20615888 DOI: 10.1158/1055-9965.epi-10-0059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Knowledge of preanalytic conditions that biospecimens are subjected to is critically important because novel surgical procedures, tissue sampling, handling, and storage might affect biomarker expression or invalidate tissue samples as analytes for some technologies. METHODS We investigated differences in RNA quality, gene expression by quantitative real-time PCR, and immunoreactive protein expression of selected prostate cancer biomarkers between tissues from retropubic radical prostatectomy (RRP) and robot-assisted laparoscopic prostatectomy (RALP). Sections of tissue microarray of 23 RALP and 22 RRP samples were stained with antibodies to androgen receptor (AR) and prostate-specific antigen (PSA) as intersite controls, and 14 other candidate biomarkers of research interest to three laboratories within the Australian Prostate Cancer BioResource tissue banking network. Quantitative real-time PCR was done for AR, PSA (KLK3), KLK2, KLK4, and HIF1A on RNA extracted from five RALP and five RRP frozen tissue cores. RESULTS No histologic differences were observed between RALP and RRP tissue. Biomarker staining grouped these samples into those with increased (PSA, CK8/18, CKHMW, KLK4), decreased (KLK2, KLK14), or no change in expression (AR, ghrelin, Ki67, PCNA, VEGF-C, PAR2, YB1, p63, versican, and chondroitin 0-sulfate) in RALP compared with RRP tissue. No difference in RNA quality or gene expression was detected between RALP and RRP tissue. CONCLUSIONS Changes in biomarker expression between RALP and RRP tissue exist at the immunoreactive protein level, but the etiology is unclear. IMPACT Future studies should account for changes in biomarker expression when using RALP tissues, and mixed cohorts of RALP and RRP tissue should be avoided.
Collapse
Affiliation(s)
- Carmela Ricciardelli
- Dame Roma Mitchell Cancer Research Laboratory, Discipline of Medicine, University of Adelaide, Hanson Institute, Adelaide, South Australia 5000, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
White NMA, Yousef GM. MicroRNAs: exploring a new dimension in the pathogenesis of kidney cancer. BMC Med 2010; 8:65. [PMID: 20964839 PMCID: PMC2978114 DOI: 10.1186/1741-7015-8-65] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 10/21/2010] [Indexed: 01/07/2023] Open
Abstract
Renal cell carcinoma (RCC) is the most common neoplasm of the adult kidney. The role of the von-Hippel-Lindeau (VHL) tumour suppressor gene is well established in RCC with a loss of VHL protein leading to accumulated hypoxia-induced factor (HIF) and the subsequent transcriptional activation of multiple downstream targets. Recently, microRNAs (miRNAs) have been shown to be differentially expressed in RCC and their role in RCC pathogenesis is emerging. This month, in BMC Medicine, Gleadle and colleagues show that certain miRNAs are regulated by VHL in either a hypoxia-inducible factor (HIF)-dependent or HIF-independent manner in RCC. They also show that miRNA expression correlates with the survival of RCC patients.In this commentary, we discuss the current understanding of the role of miRNAs in RCC and the different possible scenarios of their involvement in RCC pathogenesis. We also address their clinical significance as tumour markers, together with the potential use of miRNAs as therapeutic targets. Finally, we discuss some of the challenges that face the fast-evolving field of miRNAs, including the identification and validation of miRNA targets and the difficulties associated with establishing a link between miRNA expression and biological effects. A more thorough understanding of the biological nature of miRNAs and careful experimental planning will help us to reveal the complex role that miRNAs play in RCC pathogenesis. See research article: http://www.biomedcentral.com/1741-7015/8/64.
Collapse
Affiliation(s)
- Nicole M A White
- Department of Laboratory Medicine and the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto M5B 1W8, Canada
| | | |
Collapse
|
14
|
Yousef GM, Diamandis EP. The human kallikrein gene family: new biomarkers for ovarian cancer. Cancer Treat Res 2010; 149:165-87. [PMID: 19763436 DOI: 10.1007/978-0-387-98094-2_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- George M Yousef
- Mount Sinai Hospital, University Health Network and Toronto Medical Laboratories, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
15
|
Lawrence MG, Lai J, Clements JA. Kallikreins on steroids: structure, function, and hormonal regulation of prostate-specific antigen and the extended kallikrein locus. Endocr Rev 2010; 31:407-46. [PMID: 20103546 DOI: 10.1210/er.2009-0034] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The 15 members of the kallikrein-related serine peptidase (KLK) family have diverse tissue-specific expression profiles and putative proteolytic functions. The kallikrein family is also emerging as a rich source of disease biomarkers with KLK3, commonly known as prostate-specific antigen, being the current serum biomarker for prostate cancer. The kallikrein locus is also notable because it is extraordinarily responsive to steroids and other hormones. Indeed, at least 14 functional hormone response elements have been identified in the kallikrein locus. A more comprehensive understanding of the transcriptional regulation of kallikreins may help the field make more informed hypotheses about the physiological functions of kallikreins and their effectiveness as biomarkers. In this review, we describe the organization of the kallikrein locus and the structure of kallikrein genes and proteins. We also focus on the transcriptional regulation of kallikreins by androgens, progestins, glucocorticoids, mineralocorticoids, estrogens, and other hormones in animal models and human prostate, breast, and reproductive tract tissues. The interaction of the androgen receptor with androgen response elements in the promoter and enhancer of KLK2 and KLK3 is also summarized in detail. There is evidence that all kallikreins are regulated by multiple nuclear receptors. Yet, apart from KLK2 and KLK3, it is not clear whether all kallikreins are direct transcriptional targets. Therefore, we argue that gaining more detailed information about the mechanisms that regulate kallikrein expression should be a priority of future studies and that the kallikrein locus will continue to be an important model in the era of genome-wide analyses.
Collapse
Affiliation(s)
- Mitchell G Lawrence
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | | | | |
Collapse
|
16
|
Mavridis K, Scorilas A. Prognostic value and biological role of the kallikrein-related peptidases in human malignancies. Future Oncol 2010; 6:269-85. [PMID: 20146586 DOI: 10.2217/fon.09.149] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cancer is a substantial health problem for the populations of the Western world. The discovery of new molecular biomarkers for diagnosis, prognosis and monitoring patients' response to therapy can aid in combating this complicated disease. The human kallikrein-related peptidases (human tissue kallikreins [KLKs]) are encoded by a continuous multigene family, located on chromosomal region 19q13.3-4. KLK3 (prostate-specific antigen) is the most efficient cancer biomarker ever employed. KLK genes are expressed abnormally in various malignancies, where they affect cancer-cell growth and metastasis. Their deregulated expression pattern, often associated with various clinicopathological characteristics of cancer patients, can be exploited, solely or within multiparametric panels, as a prognostic biomarker. Recent data illustrate that discernible molecular modulations of KLKs, occurring as a result of cancer cells' treatment with antitumor agents, may serve as new potential biomarkers, possibly predicting patients' treatment response. It is believed that KLKs might be employed in future clinical practice as novel and effective tumor markers.
Collapse
Affiliation(s)
- Konstantinos Mavridis
- Department of Biochemistry & Molecular Biology, University of Athens, Athens, Greece.
| | | |
Collapse
|
17
|
Batra J, Tan OL, O'Mara T, Zammit R, Nagle CM, Clements JA, Kedda MA, Spurdle AB. Kallikrein-related peptidase 10 (KLK10) expression and single nucleotide polymorphisms in ovarian cancer survival. Int J Gynecol Cancer 2010; 20:529-36. [PMID: 20686372 DOI: 10.1111/igc.0b013e3181d9273e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025] Open
Abstract
INTRODUCTION Kallikrein-related peptidase 10 (KLK10) overexpression is a predictor of poor disease outcome in women with late-stage ovarian cancer. We aimed to identify whether KLK10 overexpression could be attributed to genetic variants, in particular, in hormone response elements or transcription factor binding sites. METHODS Cox regression analysis was used to assess the association between 2 tag and 1 exonic KLK10 single nucleotide polymorphisms (SNPs) and the survival of 319 patients with ovarian cancer. Four different ovarian cancer cell lines were investigated for KLK10 expression after hormone stimulation, and sequence variation in the 3.6-Kb upstream of the KLK10 start site. In silico analyses of SNPs in cell lines and from published databases were undertaken to identify further research novel and potentially functional SNPs that are not covered by tag SNPs. RESULTS The KLK10 SNPs investigated were not associated with ovarian cancer survival. However, steroid hormone treatment of ovarian cell lines showed KLK10 up-regulation in response to estrogen and estrogen plus progesterone treatments in the aggressive cell line PEO1 and affirmed a role for KLK10 in aggressive ovarian cancer. Potentially functional KLK10 SNPs were identified by cell line sequencing and bioinformatic analysis. CONCLUSION Potentially functional candidate KLK10 SNPs require investigation in future association studies of ovarian cancer risk and survival, including rs3760738 identified in aggressive ovarian cancer cell lines and predicted to affect transcription factor binding sites.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/drug therapy
- Adenocarcinoma, Clear Cell/genetics
- Adenocarcinoma, Clear Cell/mortality
- Adenocarcinoma, Mucinous/drug therapy
- Adenocarcinoma, Mucinous/genetics
- Adenocarcinoma, Mucinous/mortality
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Cystadenocarcinoma, Serous/drug therapy
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/mortality
- Endometrial Neoplasms/drug therapy
- Endometrial Neoplasms/genetics
- Endometrial Neoplasms/mortality
- Estrogens/pharmacology
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Haplotypes/genetics
- Humans
- Kallikreins/genetics
- Kallikreins/metabolism
- Middle Aged
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/mortality
- Polymerase Chain Reaction
- Polymorphism, Single Nucleotide/genetics
- Progesterone/pharmacology
- Prognosis
- Promoter Regions, Genetic/genetics
- Response Elements/genetics
- Survival Rate
- Young Adult
Collapse
Affiliation(s)
- Jyotsna Batra
- School of Life Sciences, Hormone-Dependent Cancer Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Three dysregulated miRNAs control kallikrein 10 expression and cell proliferation in ovarian cancer. Br J Cancer 2010; 102:1244-53. [PMID: 20354523 PMCID: PMC2856011 DOI: 10.1038/sj.bjc.6605634] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Kallikrein-related peptidases (KLKs) are a family of serine proteases that have been shown to be dysregulated in several malignancies including ovarian cancer. The control of kallikrein genes and their physiological function in cancer is not well understood. We hypothesized that microRNAs (miRNAs) represent a novel mechanism for post-transcriptional control of KLK expression in cancer. METHODS We first analysed miRNA expression in ovarian cancer in silico. A total of 98 miRNAs were reported to have altered expression in ovarian cancer. Three of these miRNAs were predicted to target KLK10. We experimentally verified the predicted miR-KLK10 interaction using two independent techniques, a luciferase assay with a construct containing the KLK10 3' untranslated region (UTR), pMIR-KLK10, and measuring KLK10 protein levels after transfection with miRNA. RESULTS When we co-transfected cells with pMIR-KLK10 and either let-7f, miR-224, or mR-516a, we saw decreased luciferase signal, suggesting that these miRNAs can target KLK10. We then examined the effect of these three miRNAs on KLK10 protein expression and cell growth. Transfection of all miRNAs, let-7f, miR-224, and miR-516a led to a decrease in protein expression and cellular growth. This effect was shown to be dose dependent. The KLK10 protein levels were partially restored by co-transfecting let-7f and its inhibitor. In addition, there was a slight decrease in KLK10 mRNA expression after transfection with let-7f. CONCLUSION Our results confirm that KLKs can be targeted by more than one miRNA. Increased expression of certain miRNAs in ovarian cancer can lead to decreased KLK protein expression and subsequently have a negative effect on cell proliferation. This dose-dependent effect suggests that a 'tweaking' or 'fine-tuning' mechanism exists in which the expression of one KLK can be controlled by multiple miRNAs. These data together suggest that miRNA may be used as potential therapeutic options and further studies are required.
Collapse
|
19
|
Chow TFF, Mankaruos M, Scorilas A, Youssef Y, Girgis A, Mossad S, Metias S, Rofael Y, Honey RJ, Stewart R, Pace KT, Yousef GM. The miR-17-92 cluster is over expressed in and has an oncogenic effect on renal cell carcinoma. J Urol 2010; 183:743-51. [PMID: 20022054 DOI: 10.1016/j.juro.2009.09.086] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Indexed: 01/07/2023]
Abstract
PURPOSE miRNAs are small, nonprotein coding RNAs that are differentially expressed in many malignancies. We previously identified 80 miRNAs that are dysregulated in clear cell renal cell carcinoma. In this study we validated over expression of the miR-17-92 cluster in clear cell renal cell carcinoma and tested the effect of 2 members of this cluster (miR-17-5p and miR-20a) on tumor proliferation. We also elucidated the role of miRNA in clear cell renal cell carcinoma pathogenesis with bioinformatics. MATERIALS AND METHODS miRNA expression was validated by quantitative reverse transcriptase-polymerase chain reaction. The cell proliferation effect of miR-17-5p and miR-20a was tested in a renal adenocarcinoma cell line model. Multiple in silico analyses were done of dysregulated miRNAs. RESULTS We validated miR-71-92 cluster over expression in clear cell renal cell carcinoma by quantitative reverse transcriptase-polymerase chain reaction. Transfection of miR-20a inhibitor significantly decreased cell proliferation in a dose dependent manner. Transfection of miR-17-5p, which is not endogenously expressed in the ACHN cell line, led to increased cell proliferation compared to control values. This effect was suppressed by miR-17-5p inhibitor. Bioinformatics analysis identified 10 clusters of miRNAs dysregulated in clear cell renal cell carcinoma that followed the same expression patterns. We also identified matching patterns between reported chromosomal aberration in clear cell renal cell carcinoma and miRNA dysregulation for 37.5% of the miRNAs. Target prediction analysis was done using multiple algorithms. Many key molecules in clear cell renal cell carcinoma pathogenesis, including HIFs, mTOR, VEGF and VHL, were potential targets for dysregulated miRNAs. CONCLUSIONS A significant number of dysregulated proteins in clear cell renal cell carcinoma are potential miRNA targets. Also, many clear cell renal cell carcinoma dysregulated miRNAs are phylogenetically conserved.
Collapse
Affiliation(s)
- Tsz-Fung F Chow
- Department of Laboratory Medicine and Keenan Research Centre, Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|