1
|
Host Cell Proteases: Cathepsins. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7123490 DOI: 10.1007/978-3-319-75474-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cathepsins are proteolytic enzymes with a broad spectrum of substrates. They are known to reside within endo-lysosomes where they acquire optimal conditions for proteolytic activity and substrate cleavage. However, cathepsins have been detected in locations other than the canonical compartments of the endocytotic pathway. They are often secreted from cells in either proteolytically inactive proform or as mature and active enzyme; this may happen in both physiological and pathological conditions. Moreover, cytosolic and nuclear forms of cathepsins have been described and are currently an emerging field of research aiming at understanding their functions in such unexpected cellular locations. This chapter summarizes the canonical pathways of biosynthesis and transport of cathepsins in healthy cells. We further describe how cathepsins can reach unexpected locations such as the extracellular space or the cytosol and the nuclear matrix. No matter where viruses and cathepsins encounter, several outcomes can be perceived. Thus, scenarios are discussed on how cathepsins may support virus entry into host cells, involve in viral fusion factor and polyprotein processing in different host cell compartments, or help in packaging of viral particles during maturation. It is of note to mention that this review is not meant to comprehensively cover the present literature on viruses encountering cathepsins but rather illustrates, on some representative examples, the possible roles of cathepsins in replication of viruses and in the course of disease.
Collapse
|
2
|
Tamhane T, Wolters BK, Illukkumbura R, Maelandsmo GM, Haugen MH, Brix K. Construction of a plasmid coding for green fluorescent protein tagged cathepsin L and data on expression in colorectal carcinoma cells. Data Brief 2015; 5:468-75. [PMID: 26594658 PMCID: PMC4610946 DOI: 10.1016/j.dib.2015.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 09/18/2015] [Accepted: 09/18/2015] [Indexed: 12/21/2022] Open
Abstract
The endo-lysosomal cysteine cathepsin L has recently been shown to have moonlighting activities in that its unexpected nuclear localization in colorectal carcinoma cells is involved in cell cycle progression (Tamhane et al., 2015) [1]. Here, we show data on the construction and sequence of a plasmid coding for human cathepsin L tagged with an enhanced green fluorescent protein (phCL-EGFP) in which the fluorescent protein is covalently attached to the C-terminus of the protease. The plasmid was used for transfection of HCT116 colorectal carcinoma cells, while data from non-transfected and pEGFP-N1-transfected cells is also shown. Immunoblotting data of lysates from non-transfected controls and HCT116 cells transfected with pEGFP-N1 and phCL-EGFP, showed stable expression of cathepsin L-enhanced green fluorescent protein chimeras, while endogenous cathepsin L protein amounts exceed those of hCL-EGFP chimeras. An effect of phCL-EGFP expression on proliferation and metabolic states of HCT116 cells at 24 h post-transfection was observed.
Collapse
Affiliation(s)
- Tripti Tamhane
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Brit K Wolters
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Rukshala Illukkumbura
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Gunhild M Maelandsmo
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway
| | - Mads H Haugen
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany ; Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway
| | - Klaudia Brix
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| |
Collapse
|
3
|
Tamhane T, Lllukkumbura R, Lu S, Maelandsmo GM, Haugen MH, Brix K. Nuclear cathepsin L activity is required for cell cycle progression of colorectal carcinoma cells. Biochimie 2015; 122:208-18. [PMID: 26343556 DOI: 10.1016/j.biochi.2015.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
Abstract
Prominent tasks of cysteine cathepsins involve endo-lysosomal proteolysis and turnover of extracellular matrix constituents or plasma membrane proteins for maintenance of intestinal homeostasis. Here we report on enhanced levels and altered subcellular localization of distinct cysteine cathepsins in adenocarcinoma tissue in comparison to adjacent normal colon. Immunofluorescence and immunoblotting investigations revealed the presence of cathepsin L in the nuclear compartment in addition to its expected endo-lysosomal localization in colorectal carcinoma cells. Cathepsin L was represented as the full-length protein in the nuclei of HCT116 cells from which stefin B, a potent cathepsin L inhibitor, was absent. Fluorescence activated cell sorting analyses with synchronized cell cultures revealed deceleration of cell cycle progression of HCT116 cells upon inhibition of cathepsin L activity, while expression of cathepsin L-enhanced green fluorescent protein chimeras accelerated S-phase entry. We conclude that the activity of cathepsin L is high in the nucleus of colorectal carcinoma cells because of lacking stefin B inhibitory activity. Furthermore, we hypothesize that nuclear cathepsin L accelerates cell cycle progression of HCT116 cells thereby supporting the notion that cysteine cathepsins may play significant roles in carcinogenesis due to deregulated trafficking.
Collapse
Affiliation(s)
- Tripti Tamhane
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany.
| | - Rukshala Lllukkumbura
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany.
| | - Shiying Lu
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany.
| | - Gunhild M Maelandsmo
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway.
| | - Mads H Haugen
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany; Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway.
| | - Klaudia Brix
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany.
| |
Collapse
|
4
|
Attack the Tumor Counterattack-C-Flip Expression in Jurkat-T-Cells Protects Against Apoptosis Induced by Coculture with SW620 Colorectal Adenocarcinoma Cells. J Surg Res 2012; 176:133-40. [DOI: 10.1016/j.jss.2011.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/01/2011] [Accepted: 06/10/2011] [Indexed: 11/22/2022]
|
5
|
Marel SVD, Majowicz A, Deventer SV, Petry H, Hommes DW, Ferreira V. Gene and cell therapy based treatment strategies for inflammatory bowel diseases. World J Gastrointest Pathophysiol 2011; 2:114-22. [PMID: 22180846 PMCID: PMC3240904 DOI: 10.4291/wjgp.v2.i6.114] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 08/12/2011] [Accepted: 08/19/2011] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are a group of chronic inflammatory disorders most commonly affecting young adults. Currently available therapies can result in induction and maintenance of remission, but are not curative and have sometimes important side effects. Advances in basic research in IBD have provided new therapeutic opportunities to target the inflammatory process involved. Gene and cell therapy approaches are suitable to prevent inflammation in the gastrointestinal tract and show therefore potential in the treatment of IBD. In this review, we present the current progress in the field of both gene and cell therapy and future prospects in the context of IBD. Regarding gene therapy, we focus on viral vectors and their applications in preclinical models. The focus for cell therapy is on regulatory T lymphocytes and mesenchymal stromal cells, their potential for the treatment of IBD and the progress made in both preclinical models and clinical trials.
Collapse
|
6
|
Arampatzidou M, Mayer K, Iolyeva ME, Asrat SG, Ravichandran M, Günther T, Schüle R, Reinheckel T, Brix K. Studies of intestinal morphology and cathepsin B expression in a transgenic mouse aiming at intestine-specific expression of Cath B-EGFP. Biol Chem 2011; 392:983-93. [PMID: 21871011 DOI: 10.1515/bc.2011.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cathepsin B has been shown to not only reside within endo-lysosomes of intestinal epithelial cells, but it was also secreted into the extracellular space of intestinal mucosa in physiological and pathological conditions. In an effort to further investigate the function of this protease in the intestine, we generated a transgenic mouse model that would enable us to visualize the localization of cathepsin B in vivo. Previously we showed that the A33-antigen promoter could be successfully used in vitro in order to express cathepsin B-green fluorescent protein chimeras in cells that co-expressed the intestine-specific transcription factor Cdx1. In this study an analog approach was used to express chimeric cathepsin B specifically in the intestine of transgenic animals. No overt phenotype was observed for the transgenic mice that reproduced normally. Biochemical and morphological studies confirmed that the overall intestinal phenotype including the structure and polarity of this tissue as well as cell numbers and differentiation states were not altered in the A33-CathB-EGFP mice when compared to wild type animals. However, transgenic expression of chimeric cathepsin B could not be visualized because it was not translated in situ although the transgene was maintained over several generations.
Collapse
Affiliation(s)
- Maria Arampatzidou
- School of Engineering and Science, Research Center MOLIFE - Molecular Life Science, Jacobs University Bremen, Campus Ring 6, D-28759 Bremen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Tedelind S, Jordans S, Resemann H, Blum G, Bogyo M, Führer D, Brix K. Cathepsin B trafficking in thyroid carcinoma cells. Thyroid Res 2011; 4 Suppl 1:S2. [PMID: 21835049 PMCID: PMC3155108 DOI: 10.1186/1756-6614-4-s1-s2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The cysteine peptidase cathepsin B is important in thyroid physiology by being involved in prohormone processing initiated in the follicle lumen and completed in endo-lysosomal compartments. However, cathepsin B has also been localized to the extrafollicular space in thyroid cancer tissue, and is therefore suggested to promote invasiveness and metastasis in thyroid carcinomas through e.g. extracellular matrix degradation. METHODS Transport of cathepsin B in normal thyroid epithelial and carcinoma cells was investigated through immunolocalization of endogenous cathepsin B in combination with probing protease activity. Transport analyses of cathepsin B-eGFP and its active-site mutant counterpart cathepsin B-C29A-eGFP were used to test whether intrinsic sequences of a protease influence its trafficking. RESULTS Our approach employing activity based probes, which distinguish between active and inactive cysteine proteases, demonstrated that both eGFP-tagged normal and active-site mutated cathepsin B chimeras reached the endo-lysosomal compartments of thyroid epithelial cells, thereby ruling out alterations of sorting signals by mutagenesis of the active-site cysteine. Analysis of chimeric protein trafficking further showed that GFP-tagged cathepsin B was transported to the expected compartments, i.e. endoplasmic reticulum, Golgi apparatus and endo-lysosomes of normal and thyroid carcinoma cell lines. However, the active-site mutated cathepsin B chimera was mostly retained in the endoplasmic reticulum and Golgi of KTC-1 and HTh7 cells. Hence the latter, as the least polarized of the three carcinoma cell lines analyzed, exhibited severe transport defects in that it retained chimeras in pre-endolysosomal compartments. Furthermore, secretion of endogenous cathepsin B and of other cysteine peptidases, which occurs at the apical pole of normal thyroid epithelial cells, was most prominent and occurred in a non-directed fashion in thyroid carcinoma cells. CONCLUSIONS Transport of endogenous and eGFP-tagged active and inactive cathepsin B in the cultured thyroid carcinoma cells reflected the distribution patterns of this protease in thyroid carcinoma tissue. Hence, our studies showed that sub-cellular localization of proteolysis is a crucial step in regulation of tissue homeostasis. We conclude that any interference with protease trafficking resulting in altered regulation of proteolytic events leads to, or is a consequence of the onset and progression of thyroid cancer.
Collapse
Affiliation(s)
- Sofia Tedelind
- School of Engineering and Science, Research Center for Molecular Life Science, Jacobs University Bremen, 28759 Bremen, Germany
| | - Silvia Jordans
- School of Engineering and Science, Research Center for Molecular Life Science, Jacobs University Bremen, 28759 Bremen, Germany
| | - Henrike Resemann
- School of Engineering and Science, Research Center for Molecular Life Science, Jacobs University Bremen, 28759 Bremen, Germany
| | - Galia Blum
- School of Pharmacy, Faculty of Medicine, The Hebrew University, 91120 Jerusalem, Israel
| | - Matthew Bogyo
- Departments of Pathology and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| | - Dagmar Führer
- Universitätsklinikum Leipzig Medizinische Klinik III, 04103 Leipzig, Germany; as of June 2011: Klinik für Endokrinologie, Zentrum für Innere Medizin, Bereich Forschung und Lehre im Zentrallabor, 45147 Essen, Germany
| | - Klaudia Brix
- School of Engineering and Science, Research Center for Molecular Life Science, Jacobs University Bremen, 28759 Bremen, Germany
| |
Collapse
|
8
|
Mayer K, Vreemann A, Qu H, Brix K. Release of endo-lysosomal cathepsins B, D, and L from IEC6 cells in a cell culture model mimicking intestinal manipulation. Biol Chem 2009; 390:471-80. [PMID: 19284293 DOI: 10.1515/bc.2009.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
IEC6 cells were used as an in vitro model system to study the effects of cell damage caused by mechanical manipulation of intestine epithelial cells. We constructed an apparatus that allowed analyzing the consequences of mechanical compression in a standardized and reproducible manner. Manipulation of IEC6 cells induced necrosis rather than apoptosis, and resulted in release of HMGB1, which is known to function as a trigger of inflammatory responses in vivo. Mechanical damage by traumatic injury of the intestine is accompanied by altered protease activities in the extracellular space, but only little is known about the possible contribution of endo-lysosomal cathepsins. Therefore, we tested the supernatants of manipulated cells in our in vitro model system for proteolytic activity and determined release rates by fluorimetric assays. Endo-lysosomal proteases, such as cathepsins B, D, and L, were released from damaged cells within the first 3 h after manipulation. While cathepsin L re-associated with the surfaces of neighboring cells, cathepsins B and D were present in the extracellular space as soluble enzymes. We conclude that our apparatus for mechanical manipulation can be used to approach surgical trauma, thereby focusing on epithelial cells of the intestine mucosa.
Collapse
Affiliation(s)
- Kristina Mayer
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 6, D-28759 Bremen, Germany
| | | | | | | |
Collapse
|
9
|
Vreemann A, Qu H, Mayer K, Andersen LB, Stefana MI, Wehner S, Lysson M, Farcas AM, Peters C, Reinheckel T, Kalff J, Brix K. Cathepsin B release from rodent intestine mucosa due to mechanical injury results in extracellular matrix damage in early post-traumatic phases. Biol Chem 2009; 390:481-92. [PMID: 19335208 DOI: 10.1515/bc.2009.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An in vivo model was used to investigate the role of cathepsins in mouse intestine after mechanical manipulation. Inspection of different intestine segments by immunofluorescence microscopy provided evidence for a local release of cathepsin B from cells of individual gut sections shortly after traumatic injury. Densitometry of immunoblots ruled out alterations in cathepsin B expression levels. Because similar results were obtained with both mouse and rat intestine trauma models, we were interested in identifying potential targets of released cathepsin B in early post-traumatic phases. Immunoblotting revealed initial declines followed by an increase in protein levels of claudin-1 and E-cadherin, indicating that tight junctions and cell-cell adhesions were only transiently compromised by surgical trauma. Apical aminopeptidase N and dipeptidyl peptidase IV were only slightly affected, whereas basolateral low-density lipoprotein receptors were strongly up-regulated in response to trauma. As potential targets of cathepsin B released from injured cells, we identified collagen IV and laminin of the basement membrane that was damaged during initial post-traumatic stages. Because increased collagen IV expression was observed in the intestine of cathepsin B-deficient animals, we propose a direct role of cathepsin B in that it contributes to acute post-traumatic extracellular matrix damage and may thereby facilitate onset of post-operative ileus.
Collapse
Affiliation(s)
- Anna Vreemann
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 6, D-28759 Bremen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|