1
|
Bernardo VS, Torres FF, Zucão ACA, Chaves NA, Santana ILR, da Silva DGH. Disrupted homeostasis in sickle cells: Expanding the comprehension of metabolism adaptation and related therapeutic strategies. Tissue Cell 2025; 93:102717. [PMID: 39805212 DOI: 10.1016/j.tice.2024.102717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/02/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025]
Abstract
Sickle cell disease (SCD) is a hereditary hemolytic anemia associated with the alteration of the membrane composition of the sickle erythrocytes, the loss of glycolysis, dysregulation of the pyruvate phosphatase pathway, and changes in nucleotide metabolism of the sickle red blood cell (RBC). This review provides a comprehensive overview of the impact of the presence of Hb S, which leads to the disruption of the normal RBC metabolism. The intricate interplay between the redox and energetic balance in erythrocytic cells, where the glycolysis, pentose phosphate pathway, and methemoglobin reductase pathways are all altered in sickle RBC, is a key focus. Moreover, this review summarizes the current knowledge about the disease-modifying agents and their action mechanisms based on the sickle RBC alterations previously mentioned (i.e., their association with beneficial effects on the sickle cells' membrane, to their RBCs' energy metabolism, and to their oxidative status). Therefore, providing a comprehensive understanding of how sickle cells cope with the disruption of metabolic homeostasis and the most promising therapeutic agents able to ameliorate the various consequences of abnormal sickle RBC alterations.
Collapse
Affiliation(s)
| | | | | | - Nayara Alves Chaves
- Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil
| | | | - Danilo Grünig Humberto da Silva
- Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil; Campus de Três Lagoas, Universidade Federal de Mato Grosso do Sul (CPTL/UFMS), Mato Grosso do Sul, Brazil.
| |
Collapse
|
2
|
Russo A, Patanè GT, Laganà G, Cirmi S, Ficarra S, Barreca D, Giunta E, Tellone E, Putaggio S. Epicatechin Influence on Biochemical Modification of Human Erythrocyte Metabolism and Membrane Integrity. Int J Mol Sci 2024; 25:13481. [PMID: 39769244 PMCID: PMC11677421 DOI: 10.3390/ijms252413481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Red blood cells (RBCs) are the main cells of the blood, perform numerous functions within the body and are in continuous contact with endogenous and exogenous molecules. In this context, the study aims to investigate the effect of epicatechin (EC) (flavan-3-ols) on the erythrocytes, analyzing the protective effect of the molecule and the action exerted on metabolism and RBC membrane. The effect of EC on RBC viability has been evaluated through the change in hemolysis and methemoglobin, assessing caspase 3 activity and performing a cytofluorometric analysis. Next, the impact of the molecule on RBC metabolism was assessed by measuring anion flux kinetics, ATP production, and phosphatase activity. Finally, an evaluation of the potential protection against different stressors was performed. Our results show no detrimental effects of EC on RBCs (no change in hemolysis or methemoglobin and no caspase 3 activation recorded); rather, a protective effect was recorded given the reduction in hemolysis induced by hydrogen peroxide treatment and temperature increase. The increase in anion exchange and intracellular ATP values, with the inhibition of phosphatase PTP1B activity, highlights several biochemical alterations induced by EC. The present results contribute to clarifying the influence of EC on RBCs, confirming the beneficial effects of catechins.
Collapse
Affiliation(s)
- Annamaria Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (A.R.); (G.T.P.); (S.C.); (S.F.); (E.T.); (S.P.)
| | - Giuseppe Tancredi Patanè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (A.R.); (G.T.P.); (S.C.); (S.F.); (E.T.); (S.P.)
| | - Giuseppina Laganà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (A.R.); (G.T.P.); (S.C.); (S.F.); (E.T.); (S.P.)
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (A.R.); (G.T.P.); (S.C.); (S.F.); (E.T.); (S.P.)
| | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (A.R.); (G.T.P.); (S.C.); (S.F.); (E.T.); (S.P.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (A.R.); (G.T.P.); (S.C.); (S.F.); (E.T.); (S.P.)
| | - Elena Giunta
- Virology and Microbiology AOOR Papardo-Piemonte, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy;
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (A.R.); (G.T.P.); (S.C.); (S.F.); (E.T.); (S.P.)
| | - Stefano Putaggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (A.R.); (G.T.P.); (S.C.); (S.F.); (E.T.); (S.P.)
| |
Collapse
|
3
|
Russo A, Patanè GT, Putaggio S, Lombardo GE, Ficarra S, Barreca D, Giunta E, Tellone E, Laganà G. Mechanisms Underlying the Effects of Chloroquine on Red Blood Cells Metabolism. Int J Mol Sci 2024; 25:6424. [PMID: 38928131 PMCID: PMC11203553 DOI: 10.3390/ijms25126424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Chloroquine (CQ) is a 4-aminoquinoline derivative largely employed in the management of malaria. CQ treatment exploits the drug's ability to cross the erythrocyte membrane, inhibiting heme polymerase in malarial trophozoites. Accumulation of CQ prevents the conversion of heme to hemozoin, causing its toxic buildup, thus blocking the survival of Plasmodium parasites. Recently, it has been reported that CQ is able to exert antiviral properties, mainly against HIV and SARS-CoV-2. This renewed interest in CQ treatment has led to the development of new studies which aim to explore its side effects and long-term outcome. Our study focuses on the effects of CQ in non-parasitized red blood cells (RBCs), investigating hemoglobin (Hb) functionality, the anion exchanger 1 (AE1) or band 3 protein, caspase 3 and protein tyrosine phosphatase 1B (PTP-1B) activity, intra and extracellular ATP levels, and the oxidative state of RBCs. Interestingly, CQ influences the functionality of both Hb and AE1, the main RBC proteins, affecting the properties of Hb oxygen affinity by shifting the conformational structure of the molecule towards the R state. The influence of CQ on AE1 flux leads to a rate variation of anion exchange, which begins at a concentration of 2.5 μM and reaches its maximum effect at 20 µM. Moreover, a significant decrease in intra and extracellular ATP levels was observed in RBCs pre-treated with 10 µM CQ vs. erythrocytes under normal conditions. This effect is related to the PTP-1B activity which is reduced in RBCs incubated with CQ. Despite these metabolic alterations to RBCs caused by exposure to CQ, no signs of variations in oxidative state or caspase 3 activation were recorded. Our results highlight the antithetical effects of CQ on the functionality and metabolism of RBCs, and encourage the development of new research to better understand the multiple potentiality of the drug.
Collapse
Affiliation(s)
| | - Giuseppe Tancredi Patanè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| | - Stefano Putaggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| | | | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| | - Elena Giunta
- Virology and Microbiology AOOR Papardo-Piemonte, 98166 Messina, Italy;
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| | - Giuseppina Laganà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| |
Collapse
|
4
|
Heras NDL, Galiana A, Ballesteros S, Quintela JC, Bonilauri I, Lahera V, Martín-Fernández B. Polyphenols and Triterpenes Combination in an In Vitro Model of Cardiac Damage: Protective Effects. Int J Mol Sci 2023; 24:7977. [PMID: 37175685 PMCID: PMC10178477 DOI: 10.3390/ijms24097977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Olive products contain high levels of monounsaturated fatty acids as well as other minor components such as triterpenic alcohols and other pentacyclic triterpenes, which together form the main triterpenes of virgin olive oil. Olive fruits and leaves contain significant amounts of hydrophilic and lipophilic bioactives including flavones, phenolic acids and phenolic alcohols, amongst others. Several studies have shown the benefits of these substances on the cardiovascular system. Regardless, little is known about the specific combination of bioactive compounds in cardiovascular health. Thus, we aimed to test the combination of a triterpenes (TT70) and a polyphenols (HT60) olive oil bioactive extract in H9c2 cells under stress conditions: LPS and H2O2 stimulation. To evaluate the effectiveness of the combination, we measured cell viability, superoxide production and protein expression of caspase 3, eNOS, peNOS, TNF-α and Il-6. Overall, cells stimulated with LPS or H2O2 and co-incubated with the combination of triterpenes and polyphenols had increased cell survival, lower levels of superoxide anion, lower protein expression of eNOS and higher expression of peNOS, increased protein expression of SOD-1 and lower protein expression of TNF-α and Il-6. The specific combination of HT60+TT70 is of great interest for further study as a possible treatment for cardiovascular damage.
Collapse
Affiliation(s)
- Natalia de las Heras
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n, Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (V.L.)
| | - Adrián Galiana
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n, Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (V.L.)
| | - Sandra Ballesteros
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n, Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (V.L.)
| | | | - Ileana Bonilauri
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Vicente Lahera
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n, Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (V.L.)
| | - Beatriz Martín-Fernández
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n, Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (V.L.)
- Scientific Department, Natac Biotech, 28923 Madrid, Spain;
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
5
|
Resveratrol, a New Allosteric Effector of Hemoglobin, Enhances Oxygen Supply Efficiency and Improves Adaption to Acute Severe Hypoxia. Molecules 2023; 28:molecules28052050. [PMID: 36903296 PMCID: PMC10004267 DOI: 10.3390/molecules28052050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Acute altitude hypoxia represents the cause of multiple adverse consequences. Current treatments are limited by side effects. Recent studies have shown the protective effects of resveratrol (RSV), but the mechanism remains unknown. To address this, the effects of RSV on the structure and function of hemoglobin of adult (HbA) were preliminarily analyzed using surface plasmon resonance (SPR) and oxygen dissociation assays (ODA). Molecular docking was conducted to specifically analyze the binding regions between RSV and HbA. The thermal stability was characterized to further validate the authenticity and effect of binding. Changes in the oxygen supply efficiency of HbA and rat RBCs incubated with RSV were detected ex vivo. The effect of RSV on the anti-hypoxic capacity under acute hypoxic conditions in vivo was evaluated. We found that RSV binds to the heme region of HbA following a concentration gradient and affects the structural stability and rate of oxygen release of HbA. RSV enhances the oxygen supply efficiency of HbA and rat RBCs ex vivo. RSV prolongs the tolerance times of mice suffering from acute asphyxia. By enhancing the oxygen supply efficiency, it alleviates the detrimental effects of acute severe hypoxia. In conclusion, RSV binds to HbA and regulates its conformation, which enhances oxygen supply efficiency and improves adaption to acute severe hypoxia.
Collapse
|
6
|
de Ligt M, Bergman M, Fuentes RM, Essers H, Moonen-Kornips E, Havekes B, Schrauwen-Hinderling VB, Schrauwen P. No effect of resveratrol supplementation after 6 months on insulin sensitivity in overweight adults: a randomized trial. Am J Clin Nutr 2020; 112:1029-1038. [PMID: 32492138 PMCID: PMC7528554 DOI: 10.1093/ajcn/nqaa125] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/07/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Effects of resveratrol on metabolic health have been studied in several short-term human clinical trials, with conflicting results. Next to dose, the duration of the clinical trials may explain the lack of effect in some studies, but long-term studies are still limited. OBJECTIVES The objective of this study was to investigate the effects of 6-mo resveratrol supplementation on metabolic health outcome parameters. METHODS Forty-one overweight men and women (BMI: 27-35 kg/m2; aged 40-70 y) completed the study. In this parallel-group, double-blind clinical trial, participants were randomized to receive either 150 mg/d of resveratrol (n = 20) or placebo (n = 21) for 6 mo. The primary outcome of the study was insulin sensitivity, using the Matsuda index. Secondary outcome measures were intrahepatic lipid (IHL) content, body composition, resting energy metabolism, blood pressure, plasma markers, physical performance, quality of life, and quality of sleep. Postintervention differences between the resveratrol and placebo arms were evaluated by ANCOVA adjusting for corresponding preintervention variables. RESULTS Preintervention, no differences were observed between the 2 treatment arms. Insulin sensitivity was not affected after 6 mo of resveratrol treatment (adjusted mean Matsuda index: 5.18 ± 0.35 in the resveratrol arm compared with 5.50 ± 0.34 in the placebo arm), although there was a significant difference in postintervention glycated hemoglobin (HbA1c) between the arms (P = 0.007). The adjusted means showed that postintervention HbA1c was lower on resveratrol (35.8 ± 0.43 mmol/mol) compared with placebo (37.6 ± 0.44 mmol/mol). No postintervention differences were found in IHL, body composition, blood pressure, energy metabolism, physical performance, or quality of life and sleep between treatment arms. CONCLUSIONS After 6 mo of resveratrol supplementation, insulin sensitivity was unaffected in the resveratrol arm compared with the placebo arm. Nonetheless, HbA1c was lower in overweight men and women in the resveratrol arm. This trial was registered at Clinicaltrials.gov as NCT02565979.
Collapse
Affiliation(s)
- Marlies de Ligt
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Maaike Bergman
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Rodrigo Mancilla Fuentes
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Hans Essers
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Esther Moonen-Kornips
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Bas Havekes
- Department of Internal Medicine, Division of Endocrinology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Vera B Schrauwen-Hinderling
- Department of Radiology and Nuclear Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | | |
Collapse
|
7
|
Cione E, La Torre C, Cannataro R, Caroleo MC, Plastina P, Gallelli L. Quercetin, Epigallocatechin Gallate, Curcumin, and Resveratrol: From Dietary Sources to Human MicroRNA Modulation. Molecules 2019; 25:63. [PMID: 31878082 PMCID: PMC6983040 DOI: 10.3390/molecules25010063] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
Epidemiologic studies suggest that dietary polyphenol intake is associated with a lower incidence of several non-communicable diseases. Although several foods contain complex mixtures of polyphenols, numerous factors can affect their content. Besides the well-known capability of these molecules to act as antioxidants, they are able to interact with cell-signaling pathways, modulating gene expression, influencing the activity of transcription factors, and modulating microRNAs. Here we deeply describe four polyphenols used as nutritional supplements: quercetin, resveratrol, epigallocatechin gallate (ECGC), and curcumin, summarizing the current knowledge about them, spanning from dietary sources to the epigenetic capabilities of these compounds on microRNA modulation.
Collapse
Affiliation(s)
- Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018–2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (E.C.); (C.L.T.); (R.C.); (M.C.C.); (P.P.)
| | - Chiara La Torre
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018–2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (E.C.); (C.L.T.); (R.C.); (M.C.C.); (P.P.)
| | - Roberto Cannataro
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018–2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (E.C.); (C.L.T.); (R.C.); (M.C.C.); (P.P.)
- Department of Health Science, School of Medicine, University of Magna Graecia, Clinical Pharmacology Unit, Mater Domini Hospital, 88100 Catanzaro, Italy
| | - Maria Cristina Caroleo
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018–2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (E.C.); (C.L.T.); (R.C.); (M.C.C.); (P.P.)
| | - Pierluigi Plastina
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018–2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (E.C.); (C.L.T.); (R.C.); (M.C.C.); (P.P.)
| | - Luca Gallelli
- Department of Health Science, School of Medicine, University of Magna Graecia, Clinical Pharmacology Unit, Mater Domini Hospital, 88100 Catanzaro, Italy
| |
Collapse
|
8
|
Nabavi SF, Atanasov AG, Khan H, Barreca D, Trombetta D, Testai L, Sureda A, Tejada S, Vacca RA, Pittalà V, Gulei D, Berindan-Neagoe I, Shirooie S, Nabavi SM. Targeting ubiquitin-proteasome pathway by natural, in particular polyphenols, anticancer agents: Lessons learned from clinical trials. Cancer Lett 2018; 434:101-113. [PMID: 30030139 DOI: 10.1016/j.canlet.2018.07.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/21/2018] [Accepted: 07/12/2018] [Indexed: 12/14/2022]
Abstract
The ubiquitin-proteasome pathway (UPP) is the main non-lysosomal proteolytic system responsible for degradation of most intracellular proteins, specifically damaged and regulatory proteins. The UPP is implicated in all aspects of the cellular metabolic networks including physiological or pathological conditions. Alterations in the components of the UPP can lead to stabilization of oncoproteins or augmented degradation of tumour suppressor favouring cancer appearance and progression. Polyphenols are natural compounds that can modulate proteasome activity or the expression of proteasome subunits. All together and due to the pleiotropic functions of UPP, there is a great interest in this proteasome system as a promising therapeutic target for the development of novel anti-cancer drugs. In the present review, the main features of the UPP and its implication in cancer development and progression are described, highlighting the importance of bioactive polyphenols that target the UPP as potential anti-cancer agents.
Collapse
Affiliation(s)
- Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Atanas G Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Postępu 36A, Jastrzębiec, 05-552, Magdalenka, Poland; Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy.
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, Italy; Interdepartmental Center of Nutrafood, University of Pisa, Pisa, Italy
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), University of Balearic Islands, Palma de Mallorca, E-07122, Balearic Islands, Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, Department of Biology, University of Balearic Islands, Ctra. Valldemossa, Km 7,5, Ed, Guillem Colom, 07122, Balearic Islands, Spain
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Italian National Council of Research, Bari, Italy
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, 400337, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, 400337, Cluj-Napoca, Romania; Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii 34 Street, 400015, Cluj-Napoca, Romania
| | - Samira Shirooie
- Department of Pharmacology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Is a dangerous blood clot formation a reversible process? Introduction of new characteristic parameter for thermodynamic clot blood characterization: Possible molecular mechanisms and pathophysiologic applications. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.04.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Expanding the Repertoire of Dielectric Fractional Models: A Comprehensive Development and Functional Applications to Predict Metabolic Alterations in Experimentally-Inaccessible Cells or Tissues. FLUIDS 2018. [DOI: 10.3390/fluids3010009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Alterations in Red Blood Cell Functionality Induced by an Indole Scaffold Containing a Y-Iminodiketo Moiety: Potential Antiproliferative Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2104247. [PMID: 27651854 PMCID: PMC5019890 DOI: 10.1155/2016/2104247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 02/04/2023]
Abstract
We have recently proposed a new erythrocyte-based model of study to predict the antiproliferative effects of selected heterocyclic scaffolds. Starting from the metabolic similarity between erythrocytes and cancer cells, we have demonstrated how the metabolic derangement induced by an indolone-based compound (DPIT) could be related to its antiproliferative effects. In order to prove the validity of our biochemical approach, in the present study the effects on erythrocyte functionality of its chemical precursor (PID), whose synthesis we reported, were investigated. The influence of the tested compound on band 3 protein (B3), oxidative state, ATP efflux, caspase 3, metabolism, intracellular pH, and Ca2+ homeostasis has been evaluated. PID crosses the membrane localizing into the cytosol, increases anion exchange, induces direct caspase activation, shifts the erythrocytes towards an oxidative state, and releases less ATP than in normal conditions. Analysis of phosphatidylserine externalization shows that PID slightly induces apoptosis. Our findings indicate that, due to its unique features, erythrocyte responses to exogenous molecular stimuli can be fruitfully correlated at structurally more complex cells, such as cancer cells. Overall, our work indicates that erythrocyte is a powerful study tool to elucidate the biochemical/biological effects of selected heterocycles opening considerable perspectives in the field of drug discovery.
Collapse
|
12
|
Short-Term Effects of Chlorpromazine on Oxidative Stress in Erythrocyte Functionality: Activation of Metabolism and Membrane Perturbation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2394130. [PMID: 27579150 PMCID: PMC4992801 DOI: 10.1155/2016/2394130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/05/2016] [Accepted: 07/14/2016] [Indexed: 11/17/2022]
Abstract
The purpose of this paper is to focus on the short-term effects of chlorpromazine on erythrocytes because it is reported that the drug, unstable in plasma but more stable in erythrocytes, interacts with erythrocyte membranes, membrane lipids, and hemoglobin. There is a rich literature about the side and therapeutic effects or complications due to chlorpromazine, but most of these studies explore the influence of long-term treatment. We think that evaluating the short-term effects of the drug may help to clarify the sequence of chlorpromazine molecular targets from which some long-term effects derive. Our results indicate that although the drug is primarily intercalated in the innermost side of the membrane, it does not influence band 3 anionic flux, lipid peroxidation, and protein carbonylation processes. On the other hand, it destabilizes and increases the autooxidation of haemoglobin, induces activation of caspase 3, and, markedly, influences the ATP and reduced glutathione levels, with subsequent exposure of phosphatidylserine at the erythrocyte surface. Overall our observations on the early stage of chlorpromazine influence on erythrocytes may contribute to better understanding of new and interesting characteristics of this compound improving knowledge of erythrocyte metabolism.
Collapse
|
13
|
Panuccio MR, Fazio A, Papalia T, Barreca D. Antioxidant Properties and Flavonoid Profile in Leaves of CalabrianLavandula multifidaL., an Autochthon Plant of Mediterranean Southern Regions. Chem Biodivers 2016; 13:416-21. [DOI: 10.1002/cbdv.201500115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/21/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Maria Rosaria Panuccio
- Department of Agricultural Science; ʻMediterraneaʼ University; Feo di Vito IT-89124 Reggio Calabria
| | - Angela Fazio
- Department of Agricultural Science; ʻMediterraneaʼ University; Feo di Vito IT-89124 Reggio Calabria
| | - Teresa Papalia
- Department of Pharmacy and health products; University of Messina; Villaggio S. S. Annunziata IT-98168 Messina
| | - Davide Barreca
- Department of Chemical Sciences; University of Messina; Viale F. Stagno d'Alcontres 31 IT-98166 Messina
| |
Collapse
|
14
|
Barreca D, Laganà G, Leuzzi U, Smeriglio A, Trombetta D, Bellocco E. Evaluation of the nutraceutical, antioxidant and cytoprotective properties of ripe pistachio ( Pistacia vera L., variety Bronte) hulls. Food Chem 2016; 196:493-502. [DOI: 10.1016/j.foodchem.2015.09.077] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/15/2015] [Accepted: 09/22/2015] [Indexed: 01/11/2023]
|
15
|
Tellone E, Galtieri A, Russo A, Ficarra S. How does resveratrol influence the genesis of some neurodegenerative diseases? Neural Regen Res 2016; 11:86-7. [PMID: 26981091 PMCID: PMC4774239 DOI: 10.4103/1673-5374.175047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonio Galtieri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Annamaria Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
16
|
Barreca D, Laganà G, Toscano G, Calandra P, Kiselev MA, Lombardo D, Bellocco E. The interaction and binding of flavonoids to human serum albumin modify its conformation, stability and resistance against aggregation and oxidative injuries. Biochim Biophys Acta Gen Subj 2016; 1861:3531-3539. [PMID: 26971858 DOI: 10.1016/j.bbagen.2016.03.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND Interactions of ligands with proteins imply changes in the properties of the macromolecules that may deeply modify their biological activities and conformations and allow them to acquire new and, sometimes, unexpected abilities. The flavonoid phloretin has several pharmacological properties that are starting to be elucidated, one of which is the well-known inhibition of glucose transport. METHODS The interactions of phloretin to human serum albumin have been investigated by fluorescence, UV-visible, FTIR spectroscopy, native electrophoresis, protein ligand docking studies, fluorescence and scanning electron microscopy. RESULTS Spectroscopic investigations suggest that the flavonoid binds to human serum albumin inducing a decrease in α-helix structures as shown by deconvolution of FTIR Amide I' band. Fluorescence and displacement studies highlight modifications of environment around Trp214 with the primary binding site located in the Sudlow's site I. In the hydrophobic cavity of subdomain IIA, molecular modeling studies suggest that phloretin is in non-planar conformation and hydrogen-bonded with Ser202 and Ser454. These changes make HSA able to withstand protein degradation due to HCLO and fibrillation. GENERAL SIGNIFICANCE Our work aims to open new perspectives as far as the binding of flavonoids to HSA are concern and shows as the properties of both compounds can be remarkable modified after the complex formation, resulting, for instance, in a protein structure much more resistant to oxidation and fibrillation. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.
Collapse
Affiliation(s)
- Davide Barreca
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche ed ambientali, Università di Messina. Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giuseppina Laganà
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche ed ambientali, Università di Messina. Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giovanni Toscano
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche ed ambientali, Università di Messina. Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Pietro Calandra
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Via Salaria km 29.300, Monterotondo Stazione, 00015 Roma, Italy
| | - Mikhail A Kiselev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Ulica Joliot-Curie 6, Dubna, Moscow 141980, Russia
| | - Domenico Lombardo
- Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Ersilia Bellocco
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche ed ambientali, Università di Messina. Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
17
|
Ficarra S, Tellone E, Pirolli D, Russo A, Barreca D, Galtieri A, Giardina B, Gavezzotti P, Riva S, De Rosa MC. Insights into the properties of the two enantiomers of trans-δ-viniferin, a resveratrol derivative: antioxidant activity, biochemical and molecular modeling studies of its interactions with hemoglobin. MOLECULAR BIOSYSTEMS 2016; 12:1276-86. [PMID: 26883599 DOI: 10.1039/c5mb00897b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Resveratrol is widely known as an antioxidant and anti-inflammatory molecule. The present study first reports the effects of trans-δ-viniferin (TVN), a dimer of resveratrol, on human erythrocytes. The antioxidant activity of TVN was tested using in vitro model systems such as hydroxy radical scavenging, DPPH and lipid peroxidation. In addition we have examined the influence of the 15R,22R- and 15S,22S-enantiomers (abbreviated R,R-TVN, and S,S-TVN, respectively) on anion transport, ATP release, caspase 3 activation. Given that hemoglobin (Hb) redox reactions are the major source of RBC oxidative stress, we also explored the effects of TVN on hemoglobin function. TVN showed moderate antioxidant properties and good protective activity from hemoglobin oxidation. Potential binding sites of R,R-TVN and S,S-TVN with oxy- and deoxy-Hb were also investigated through an extensive in silico docking approach and molecular dynamics calculations. The whole molecular modeling studies indicate that binding of R,R-TVN and S,S-TVN to Hb lacks of specific ligand-target interactions. This is the first report on the biological activity of the individual enantiomers of a resveratrol-related dimer.
Collapse
Affiliation(s)
- Silvana Ficarra
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche e ambientali, Università degli Studi di Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tellone E, Galtieri A, Russo A, Giardina B, Ficarra S. Resveratrol: A Focus on Several Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:392169. [PMID: 26180587 PMCID: PMC4477222 DOI: 10.1155/2015/392169] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/19/2014] [Accepted: 12/26/2014] [Indexed: 01/25/2023]
Abstract
Molecules of the plant world are proving their effectiveness in countering, slowing down, and regressing many diseases. The resveratrol for its intrinsic properties related to its stilbene structure has been proven to be a universal panacea, especially for a wide range of neurodegenerative diseases. This paper evaluates (in vivo and in vitro) the various molecular targets of this peculiar polyphenol and its ability to effectively counter several neurodegenerative disorders such as Parkinson's, Alzheimer's, and Huntington's diseases and amyotrophic lateral sclerosis. What emerges is that, in the deep heterogeneity of the pathologies evaluated, resveratrol through a convergence on the protein targets is able to give therapeutic responses in neuronal cells deeply diversified not only in morphological structure but especially in their function performed in the anatomical district to which they belong.
Collapse
Affiliation(s)
- Ester Tellone
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonio Galtieri
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Annamaria Russo
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Bruno Giardina
- Biochemistry and Clinical Biochemistry Institute, School of Medicine, Catholic University, L. go F. Vito n.1, 00168 Rome, Italy
- C.N.R. Institute of Chemistry of Molecular Recognition, L. go F. Vito n.1, 00168 Rome, Italy
| | - Silvana Ficarra
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
19
|
Barreca D, Bellocco E, Laganà G, Ginestra G, Bisignano C. Biochemical and antimicrobial activity of phloretin and its glycosilated derivatives present in apple and kumquat. Food Chem 2014; 160:292-7. [DOI: 10.1016/j.foodchem.2014.03.118] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/04/2014] [Accepted: 03/24/2014] [Indexed: 12/16/2022]
|
20
|
Scala A, Ficarra S, Russo A, Barreca D, Giunta E, Galtieri A, Grassi G, Tellone E. A new erythrocyte-based biochemical approach to predict the antiproliferative effects of heterocyclic scaffolds: The case of indolone. Biochim Biophys Acta Gen Subj 2014; 1850:73-9. [PMID: 25270672 DOI: 10.1016/j.bbagen.2014.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/13/2014] [Accepted: 09/22/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND The indole core is a key structural feature of many natural products and biomolecules with broad spectrum chemotherapeutic properties. Some of us have recently synthesized a library of biologically promising indolone-based compounds. The present study focuses on the effects of one of them, namely DPIT, on human erythrocytes. METHODS We have examined the influence of DPIT on band 3 protein, intracellular ATP concentration and transport, caspase 3 activation, metabolic adaptation and membrane stability. RESULTS Our study elucidates that DPIT, intercalated into the phospholipid bilayer, decreases the anion transport, the intracellular ATP concentration and the cytosolic pH, inducing a direct activation of caspase 3. CONCLUSIONS Starting from the metabolic similarity between erythrocytes and cancer cells, we investigate how the metabolic derangements and membrane alterations induced by selected heterocycles could be related to the antiproliferative effects. GENERAL SIGNIFICANCE Our work aims to propose a new model of study to predict the antiproliferative effects of heterocyclic scaffolds, pointing out that only one of the listed conditions would be unfavorable to the life cycle of neoplastic cells.
Collapse
Affiliation(s)
- Angela Scala
- Department of Chemical Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Silvana Ficarra
- Department of Chemical Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Annamaria Russo
- Department of Chemical Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Davide Barreca
- Department of Chemical Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Elena Giunta
- Virology and Microbiology AOOR Papardo-Piemonte, V.le F. Stagno d'Alcontres, 98166 Messina, Italy
| | - Antonio Galtieri
- Department of Chemical Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giovanni Grassi
- Department of Chemical Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Ester Tellone
- Department of Chemical Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
21
|
Diosmin binding to human serum albumin and its preventive action against degradation due to oxidative injuries. Biochimie 2013; 95:2042-9. [DOI: 10.1016/j.biochi.2013.07.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 07/12/2013] [Indexed: 11/20/2022]
|
22
|
Polymethoxylated, C- and O-glycosyl flavonoids in tangelo (Citrus reticulata×Citrus paradisi) juice and their influence on antioxidant properties. Food Chem 2013; 141:1481-8. [DOI: 10.1016/j.foodchem.2013.03.095] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/22/2013] [Accepted: 03/26/2013] [Indexed: 11/18/2022]
|
23
|
Barreca D, Bellocco E, Leuzzi U, Gattuso G. First evidence of C- and O-glycosyl flavone in blood orange (Citrus sinensis (L.) Osbeck) juice and their influence on antioxidant properties. Food Chem 2013; 149:244-52. [PMID: 24295703 DOI: 10.1016/j.foodchem.2013.10.096] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 10/01/2013] [Accepted: 10/22/2013] [Indexed: 02/02/2023]
Abstract
RP-LC-DAD-ESI-MS-MS separation/identification protocol has been employed for the identification and characterisation of nine C- and O-glycosyl flavonoids in Moro (Citrus sinensis (L.) Osbeck) juice grown in Southern Italy. For the first time we reported the presence of five C-glycosyl flavones (lucenin-2, vicenin-2, stellarin-2, lucenin-2 4'-methyl ether and scoparin), a 3-hydroxy-3-methylglutaryl glycosyl flavonol (3-hydroxy-3-methylglutaryl glycosyl quercetin) and a flavone O-glycosides (chrysoeriol 7-O-neoesperidoside). Moreover, the influence of the identified C- and O-glycosyl flavonoids on the total antioxidant activity of crude juice has been evaluated on the basis of its ability to scavenge DPPH•, OH• and ABTS•+ radicals and to reduce iron.
Collapse
Affiliation(s)
- Davide Barreca
- Dipartimento di Scienze Chimiche, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | | | | | | |
Collapse
|
24
|
Riganti C, Gazzano E, Polimeni M, Aldieri E, Ghigo D. The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med 2012; 53:421-36. [PMID: 22580150 DOI: 10.1016/j.freeradbiomed.2012.05.006] [Citation(s) in RCA: 315] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 04/14/2012] [Accepted: 05/03/2012] [Indexed: 01/10/2023]
Abstract
The pentose phosphate pathway, one of the main antioxidant cellular defense systems, has been related for a long time almost exclusively to its role as a provider of reducing power and ribose phosphate to the cell. In addition to this "traditional" correlation, in the past years multiple roles have emerged for this metabolic cascade, involving the cell cycle, apoptosis, differentiation, motility, angiogenesis, and the response to anti-tumor therapy. These findings make the pentose phosphate pathway a very interesting target in tumor cells. This review summarizes the latest discoveries relating the activity of the pentose phosphate pathway to various aspects of tumor metabolism, such as cell proliferation and death, tissue invasion, angiogenesis, and resistance to therapy, and discusses the possibility that drugs modulating the pathway could be used as potential tools in tumor therapy.
Collapse
Affiliation(s)
- Chiara Riganti
- Department of Genetics, Biology, and Biochemistry, University of Torino, Turin, Italy.
| | | | | | | | | |
Collapse
|
25
|
Tellone E, Ficarra S, Russo A, Bellocco E, Barreca D, Laganà G, Leuzzi U, Pirolli D, De Rosa MC, Giardina B, Galtieri A. Caffeine inhibits erythrocyte membrane derangement by antioxidant activity and by blocking caspase 3 activation. Biochimie 2011; 94:393-402. [PMID: 21856371 DOI: 10.1016/j.biochi.2011.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 08/09/2011] [Indexed: 12/30/2022]
Abstract
The aim of this research was to investigate the effect of caffeine on band 3 (the anion exchanger protein), haemoglobin function, caspase 3 activation and glucose-6-phosphate metabolism during the oxygenation-deoxygenation cycle in human red blood cells. A particular attention has been given to the antioxidant activity by using in vitro antioxidant models. Caffeine crosses the erythrocyte membrane and interacts with the two extreme conformational states of haemoglobin (the T and the R-state within the framework of the simple two states allosteric model) with different binding affinities. By promoting the high affinity state (R-state), the caffeine-haemoglobin interaction does enhance the pentose phosphate pathway. This is of benefit for red blood cells since it leads to an increase of NADPH availability. Moreover, caffeine effect on band 3, mediated by haemoglobin, results in an extreme increase of the anion exchange, particularly in oxygenated erythrocytes. This enhances the transport of the endogenously produced CO(2) thereby avoiding the production of dangerous secondary radicals (carbonate and nitrogen dioxide) which are harmful to the cellular membrane. Furthermore caffeine destabilizes the haeme-protein interactions within the haemoglobin molecule and triggers the production of superoxide and met-haemoglobin. However this damaging effect is almost balanced by the surprising scavenger action of the alkaloid with respect to the hydroxyl radical. These experimental findings are supported by in silico docking and molecular dynamics studies and by what we may call the "caspase silence"; in fact, there is no evidence of any caspase 3 activity enhancement; this is likely due to the promotion of positive metabolic conditions which result in an increase of the cellular reducing power.
Collapse
Affiliation(s)
- Ester Tellone
- Organic and Biological Chemistry Department, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ficarra S, Russo A, Stefanizzi F, Mileto M, Barreca D, Bellocco E, Laganà G, Leuzzi U, Giardina B, Galtieri A, Tellone E. Palytoxin Induces Functional Changes of Anion Transport in Red Blood Cells: Metabolic Impact. J Membr Biol 2011; 242:31-9. [DOI: 10.1007/s00232-011-9374-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
|