1
|
Kabra R, Singh S. Evolutionary aspect of Miltefosine transporter proteins in Leishmania major. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:399-418. [PMID: 35534115 DOI: 10.1016/bs.apcsb.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transporter proteins, P-glycoprotein (P-gp) and P4ATPase-CDC50, are responsible for the transport of Miltefosine drug across cell membrane of a protozoan parasite Leishmania major. Mutations or change in activity of these proteins may lead to emergence of resistance in the parasite. Owing to the structural and functional importance of these transporter proteins, we have tried to decipher the evolutionary divergence of these Miltefosine transporter proteins across different forms of life including Protists, Fungi, Plants and Animals. We retrieved 96, 207, and 189 sequences of P-gp, P4ATPase and CDC50 proteins respectively, across diverse variety of organisms for the conserved analysis. Phylogenetic trees were constructed for these three transporter proteins based on Bayesian posterior probability inference. The evolutionary analysis concluded that these proteins remain highly conserved throughout the species diversity but still substantial differences in the proteins for host (Homo sapiens) and parasite (L. major) were observed which have led in targeting these Miltefosine transporter proteins in a parasite specific manner. The functional and structural components observed in terms of pattern resulting from the variability in the phylogenetic tree are outlined.
Collapse
Affiliation(s)
- Ritika Kabra
- National Centre for Cell Science, NCCS Complex, SP Pune University Campus, Pune, India
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, SP Pune University Campus, Pune, India.
| |
Collapse
|
2
|
Ahmed MS, Lauersen KJ, Ikram S, Li C. Efflux Transporters' Engineering and Their Application in Microbial Production of Heterologous Metabolites. ACS Synth Biol 2021; 10:646-669. [PMID: 33751883 DOI: 10.1021/acssynbio.0c00507] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabolic engineering of microbial hosts for the production of heterologous metabolites and biochemicals is an enabling technology to generate meaningful quantities of desired products that may be otherwise difficult to produce by traditional means. Heterologous metabolite production can be restricted by the accumulation of toxic products within the cell. Efflux transport proteins (transporters) provide a potential solution to facilitate the export of these products, mitigate toxic effects, and enhance production. Recent investigations using knockout lines, heterologous expression, and expression profiling of transporters have revealed candidates that can enhance the export of heterologous metabolites from microbial cell systems. Transporter engineering efforts have revealed that some exhibit flexible substrate specificity and may have broader application potentials. In this Review, the major superfamilies of efflux transporters, their mechanistic modes of action, selection of appropriate efflux transporters for desired compounds, and potential transporter engineering strategies are described for potential applications in enhancing engineered microbial metabolite production. Future studies in substrate recognition, heterologous expression, and combinatorial engineering of efflux transporters will assist efforts to enhance heterologous metabolite production in microbial hosts.
Collapse
Affiliation(s)
- Muhammad Saad Ahmed
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology (BIT), Beijing 100081, P. R. China
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Abid Majeed Road, The Mall, Rawalpindi 46000, Pakistan
| | - Kyle J. Lauersen
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Sana Ikram
- Beijing Higher Institution Engineering Research Center for Food Additives and Ingredients, Beijing Technology & Business University (BTBU), Beijing 100048, P. R. China
| | - Chun Li
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology (BIT), Beijing 100081, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
3
|
Medrano-Soto A, Moreno-Hagelsieb G, McLaughlin D, Ye ZS, Hendargo KJ, Saier MH. Bioinformatic characterization of the Anoctamin Superfamily of Ca2+-activated ion channels and lipid scramblases. PLoS One 2018; 13:e0192851. [PMID: 29579047 PMCID: PMC5868767 DOI: 10.1371/journal.pone.0192851] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/31/2018] [Indexed: 01/01/2023] Open
Abstract
Our laboratory has developed bioinformatic strategies for identifying distant phylogenetic relationships and characterizing families and superfamilies of transport proteins. Results using these tools suggest that the Anoctamin Superfamily of cation and anion channels, as well as lipid scramblases, includes three functionally characterized families: the Anoctamin (ANO), Transmembrane Channel (TMC) and Ca2+-permeable Stress-gated Cation Channel (CSC) families; as well as four families of functionally uncharacterized proteins, which we refer to as the Anoctamin-like (ANO-L), Transmembrane Channel-like (TMC-L), and CSC-like (CSC-L1 and CSC-L2) families. We have constructed protein clusters and trees showing the relative relationships among the seven families. Topological analyses suggest that the members of these families have essentially the same topologies. Comparative examination of these homologous families provides insight into possible mechanisms of action, indicates the currently recognized organismal distributions of these proteins, and suggests drug design potential for the disease-related channel proteins.
Collapse
Affiliation(s)
- Arturo Medrano-Soto
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
| | | | - Daniel McLaughlin
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
| | - Zachary S. Ye
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
| | - Kevin J. Hendargo
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
| | - Milton H. Saier
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
4
|
Moreno-Hagelsieb G, Vitug B, Medrano-Soto A, Saier MH. The Membrane Attack Complex/Perforin Superfamily. J Mol Microbiol Biotechnol 2017; 27:252-267. [PMID: 29145176 DOI: 10.1159/000481286] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 09/05/2017] [Indexed: 12/30/2022] Open
Abstract
The membrane attack complex/perforin (MACPF) superfamily consists of a diverse group of proteins involved in bacterial pathogenesis and sporulation as well as eukaryotic immunity, embryonic development, neural migration and fruiting body formation. The present work shows that the evolutionary relationships between the members of the superfamily, previously suggested by comparison of their tertiary structures, can also be supported by analyses of their primary structures. The superfamily includes the MACPF family (TC 1.C.39), the cholesterol-dependent cytolysin (CDC) family (TC 1.C.12.1 and 1.C.12.2) and the pleurotolysin pore-forming (pleurotolysin B) family (TC 1.C.97.1), as revealed by expansion of each family by comparison against a large protein database, and by the comparisons of their hidden Markov models. Clustering analyses demonstrated grouping of the CDC homologues separately from the 12 MACPF subfamilies, which also grouped separately from the pleurotolysin B family. Members of the MACPF superfamily revealed a remarkably diverse range of proteins spanning eukaryotic, bacterial, and archaeal taxonomic domains, with notable variations in protein domain architectures. Our strategy should also be helpful in putting together other highly divergent protein families.
Collapse
|
5
|
Lee J, Ghosh S, Saier MH. Comparative genomic analyses of transport proteins encoded within the red algae Chondrus crispus, Galdieria sulphuraria, and Cyanidioschyzon merolae 11. JOURNAL OF PHYCOLOGY 2017; 53:503-521. [PMID: 28328149 PMCID: PMC5591647 DOI: 10.1111/jpy.12534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/21/2016] [Indexed: 05/15/2023]
Abstract
Galdieria sulphuraria and Cyanidioschyzon merolae are thermo-acidophilic unicellular red algal cousins capable of living in volcanic environments, although the former can additionally thrive in the presence of toxic heavy metals. Bioinformatic analyses of transport systems were carried out on their genomes, as well as that of the mesophilic multicellular red alga Chondrus crispus (Irish moss). We identified transport proteins related to the metabolic capabilities, physiological properties, and environmental adaptations of these organisms. Of note is the vast array of transporters encoded in G. sulphuraria capable of importing a variety of carbon sources, particularly sugars and amino acids, while C. merolae and C. crispus have relatively few such proteins. Chondrus crispus may prefer short chain acids to sugars and amino acids. In addition, the number of encoded proteins pertaining to heavy metal ion transport is highest in G. sulphuraria and lowest in C. crispus. All three organisms preferentially utilize secondary carriers over primary active transporters, suggesting that their primary source of energy derives from electron flow rather than substrate-level phosphorylation. Surprisingly, the percentage of inorganic ion transporters encoded in C. merolae more closely resembles that of C. crispus than G. sulphuraria, but only C. crispus appears to signal via voltage-gated cation channels and possess a Na+ /K+ -ATPase and a Na+ exporting pyrophosphatase. The results presented in this report further our understanding of the metabolic potential and toxic compound resistances of these three organisms.
Collapse
Affiliation(s)
| | | | - Milton H. Saier
- Corresponding Author: Tel +1 858 534 4084 Fax: +1 858 534 7108 (M.H. Saier)
| |
Collapse
|
6
|
Zhou Z, Sun N, Wu S, Li YQ, Wang Y. Genomic data mining reveals a rich repertoire of transport proteins in Streptomyces. BMC Genomics 2016; 17 Suppl 7:510. [PMID: 27557108 PMCID: PMC5001237 DOI: 10.1186/s12864-016-2899-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Streptomycetes are soil-dwelling Gram-positive bacteria that are best known as the major producers of antibiotics used in the pharmaceutical industry. The evolution of exceptionally powerful transporter systems in streptomycetes has enabled their adaptation to the complex soil environment. Results Our comparative genomic analyses revealed that each of the eleven Streptomyces species examined possesses a rich repertoire of from 761-1258 transport proteins, accounting for 10.2 to 13.7 % of each respective proteome. These transporters can be divided into seven functional classes and 171 transporter families. Among them, the ATP-binding Cassette (ABC) superfamily and the Major Facilitator Superfamily (MFS) represent more than 40 % of all the transport proteins in Streptomyces. They play important roles in both nutrient uptake and substrate secretion, especially in the efflux of drugs and toxicants. The evolutionary flexibility across eleven Streptomyces species is seen in the lineage-specific distribution of transport proteins in two major protein translocation pathways: the general secretory (Sec) pathway and the twin-arginine translocation (Tat) pathway. Conclusions Our results present a catalog of transport systems in eleven Streptomyces species. These expansive transport systems are important mediators of the complex processes including nutrient uptake, concentration balance of elements, efflux of drugs and toxins, and the timely and orderly secretion of proteins. A better understanding of transport systems will allow enhanced optimization of production processes for both pharmaceutical and industrial applications of Streptomyces, which are widely used in antibiotic production and heterologous expression of recombinant proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2899-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhan Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.,Zhejiang Provincial Key Laboratory of Microbial Biochemistry and Metabolism Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.,Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Ning Sun
- Zhejiang Provincial Key Laboratory of Microbial Biochemistry and Metabolism Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shanshan Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yong-Quan Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China. .,Zhejiang Provincial Key Laboratory of Microbial Biochemistry and Metabolism Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Yufeng Wang
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
7
|
Transport protein evolution deduced from analysis of sequence, topology and structure. Curr Opin Struct Biol 2016; 38:9-17. [PMID: 27270239 DOI: 10.1016/j.sbi.2016.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 11/21/2022]
Abstract
The vast majority of well studied transmembrane channels, secondary carriers, primary active transporters and group translocators are believed to have arisen vis intragenic duplication events from simple channel-forming peptides with just 1-3 transmembrane α-helical segments, found ubiquitously in nature. Only a few established channel-forming proteins appear to have evolved via other pathways. The proposed pathway for the evolutionary appearance of the five types of transport proteins involved intragenic duplication of transmembrane pore-forming peptide-encoding genes, giving rise to channel proteins. These gave rise to single protein secondary carriers which upon superimposition of addition protein domains and proteins, including energy-coupling proteins and extracytoplasmic receptors, gave rise to multidomain, multicomponent carriers, primary active transporters and group translocators. Some of the largest and best characterized superfamilies of these transmembrane transport proteins are discussed from topological and evolutionary standpoints.
Collapse
|
8
|
Reddy BL, Saier MH. Properties and Phylogeny of 76 Families of Bacterial and Eukaryotic Organellar Outer Membrane Pore-Forming Proteins. PLoS One 2016; 11:e0152733. [PMID: 27064789 PMCID: PMC4827864 DOI: 10.1371/journal.pone.0152733] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/18/2016] [Indexed: 12/11/2022] Open
Abstract
We here report statistical analyses of 76 families of integral outer membrane pore-forming proteins (OMPPs) found in bacteria and eukaryotic organelles. 47 of these families fall into one superfamily (SFI) which segregate into fifteen phylogenetic clusters. Families with members of the same protein size, topology and substrate specificities often cluster together. Virtually all OMPP families include only proteins that form transmembrane pores. Nine such families, all of which cluster together in the SFI phylogenetic tree, contain both α- and β-structures, are multi domain, multi subunit systems, and transport macromolecules. Most other SFI OMPPs transport small molecules. SFII and SFV homologues derive from Actinobacteria while SFIII and SFIV proteins derive from chloroplasts. Three families of actinobacterial OMPPs and two families of eukaryotic OMPPs apparently consist primarily of α-helices (α-TMSs). Of the 71 families of (putative) β-barrel OMPPs, only twenty could not be assigned to a superfamily, and these derived primarily from Actinobacteria (1), chloroplasts (1), spirochaetes (8), and proteobacteria (10). Proteins were identified in which two or three full length OMPPs are fused together. Family characteristic are described and evidence agrees with a previous proposal suggesting that many arose by adjacent β-hairpin structural unit duplications.
Collapse
Affiliation(s)
- Bhaskara L. Reddy
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California, United States of America
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Makarova KS, Galperin MY, Koonin EV. Comparative genomic analysis of evolutionarily conserved but functionally uncharacterized membrane proteins in archaea: Prediction of novel components of secretion, membrane remodeling and glycosylation systems. Biochimie 2015; 118:302-12. [PMID: 25583072 PMCID: PMC5898192 DOI: 10.1016/j.biochi.2015.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/02/2015] [Indexed: 01/03/2023]
Abstract
A systematic comparative genomic analysis of all archaeal membrane proteins that have been projected to the last archaeal common ancestor gene set led to the identification of several novel components of predicted secretion, membrane remodeling, and protein glycosylation systems. Among other findings, most crenarchaea have been shown to encode highly diverged orthologs of the membrane insertase YidC, which is nearly universal in bacteria, eukaryotes, and euryarchaea. We also identified a vast family of archaeal proteins, including the C-terminal domain of N-glycosylation protein AglD, as membrane flippases homologous to the flippase domain of bacterial multipeptide resistance factor MprF, a bifunctional lysylphosphatidylglycerol synthase and flippase. Additionally, several proteins were predicted to function as membrane transporters. The results of this work, combined with our previous analyses, reveal an unexpected diversity of putative archaeal membrane-associated functional systems that remain to be functionally characterized. A more general conclusion from this work is that the currently available collection of archaeal (and bacterial) genomes could be sufficient to identify (almost) all widespread functional modules and develop experimentally testable predictions of their functions.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
10
|
Functional Dependence between Septal Protein SepJ from Anabaena sp. Strain PCC 7120 and an Amino Acid ABC-Type Uptake Transporter. J Bacteriol 2015; 197:2721-30. [PMID: 26078444 DOI: 10.1128/jb.00289-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/05/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In the diazotrophic filaments of heterocyst-forming cyanobacteria, two different cell types, the CO2-fixing vegetative cells and the N2-fixing heterocysts, exchange nutrients, including some amino acids. In the model organism Anabaena sp. strain PCC 7120, the SepJ protein, composed of periplasmic and integral membrane (permease) sections, is located at the intercellular septa joining adjacent cells in the filament. The unicellular cyanobacterium Synechococcus elongatus strain PCC 7942 bears a gene, Synpcc7942_1024 (here designated dmeA), encoding a permease homologous to the SepJ permease domain. Synechococcus strains lacking dmeA or lacking dmeA and expressing Anabaena sepJ were constructed. The Synechococcus dmeA mutant showed a significant 22 to 32% decrease in the uptake of aspartate, glutamate, and glutamine, a phenotype that could be partially complemented by Anabaena sepJ. Synechococcus mutants of an ATP-binding-cassette (ABC)-type transporter for polar amino acids showed >98% decreased uptake of glutamate irrespective of the presence of dmeA or Anabaena sepJ in the same strain. Thus, Synechococcus DmeA or Anabaena SepJ is needed to observe full (or close to full) activity of the ABC transporter. An Anabaena sepJ deletion mutant was significantly impaired in glutamate and aspartate uptake, which also in this cyanobacterium requires the activity of an ABC-type transporter for polar amino acids. SepJ appears therefore to generally stimulate the activity of cyanobacterial ABC-type transporters for polar amino acids. Conversely, an Anabaena mutant of three ABC-type transporters for amino acids was impaired in the intercellular transfer of 5-carboxyfluorescein, a SepJ-related property. Our results unravel possible functional interactions in transport elements important for diazotrophic growth. IMPORTANCE Membrane transporters are essential for many aspects of cellular life, from uptake and export of substances in unicellular organisms to intercellular molecular exchange in multicellular organisms. Heterocyst-forming cyanobacteria such as Anabaena represent a unique case of multicellularity, in which two cell types exchange nutrients and regulators. The SepJ protein located at the intercellular septa in the filaments of Anabaena contains a permease domain of the drug/metabolite transporter (DMT) superfamily that somehow contributes to intercellular molecular transfer. In this work, we have found that SepJ stimulates the activity of a polar amino acid uptake transporter of the ATP-binding-cassette (ABC) superfamily, which could itself affect an intercellular transfer activity related to SepJ, thus unraveling possible functional interactions between these different transporters.
Collapse
|
11
|
Chiang Z, Vastermark A, Punta M, Coggill PC, Mistry J, Finn RD, Saier MH. The complexity, challenges and benefits of comparing two transporter classification systems in TCDB and Pfam. Brief Bioinform 2015; 16:865-72. [PMID: 25614388 PMCID: PMC4570203 DOI: 10.1093/bib/bbu053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Indexed: 01/04/2023] Open
Abstract
Transport systems comprise roughly 10% of all proteins in a cell, playing critical roles in many processes. Improving and expanding their classification is an important goal that can affect studies ranging from comparative genomics to potential drug target searches. It is not surprising that different classification systems for transport proteins have arisen, be it within a specialized database, focused on this functional class of proteins, or as part of a broader classification system for all proteins. Two such databases are the Transporter Classification Database (TCDB) and the Protein family (Pfam) database. As part of a long-term endeavor to improve consistency between the two classification systems, we have compared transporter annotations in the two databases to understand the rationale for differences and to improve both systems. Differences sometimes reflect the fact that one database has a particular transporter family while the other does not. Differing family definitions and hierarchical organizations were reconciled, resulting in recognition of 69 Pfam ‘Domains of Unknown Function’, which proved to be transport protein families to be renamed using TCDB annotations. Of over 400 potential new Pfam families identified from TCDB, 10% have already been added to Pfam, and TCDB has created 60 new entries based on Pfam data. This work, for the first time, reveals the benefits of comprehensive database comparisons and explains the differences between Pfam and TCDB.
Collapse
|
12
|
Kumar U, Saier MH. Comparative Genomic Analysis of Integral Membrane Transport Proteins in Ciliates. J Eukaryot Microbiol 2014; 62:167-87. [DOI: 10.1111/jeu.12156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/23/2014] [Accepted: 04/28/2014] [Indexed: 11/25/2022]
Affiliation(s)
- Ujjwal Kumar
- Division of Biological Sciences; University of California at San Diego; La Jolla California
| | - Milton H. Saier
- Division of Biological Sciences; University of California at San Diego; La Jolla California
| |
Collapse
|
13
|
Reddy A, Cho J, Ling S, Reddy V, Shlykov M, Saier MH. Reliability of nine programs of topological predictions and their application to integral membrane channel and carrier proteins. J Mol Microbiol Biotechnol 2014; 24:161-90. [PMID: 24992992 DOI: 10.1159/000363506] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We evaluated topological predictions for nine different programs, HMMTOP, TMHMM, SVMTOP, DAS, SOSUI, TOPCONS, PHOBIUS, MEMSAT-SVM (hereinafter referred to as MEMSAT), and SPOCTOPUS. These programs were first evaluated using four large topologically well-defined families of secondary transporters, and the three best programs were further evaluated using topologically more diverse families of channels and carriers. In the initial studies, the order of accuracy was: SPOCTOPUS > MEMSAT > HMMTOP > TOPCONS > PHOBIUS > TMHMM > SVMTOP > DAS > SOSUI. Some families, such as the Sugar Porter Family (2.A.1.1) of the Major Facilitator Superfamily (MFS; TC #2.A.1) and the Amino Acid/Polyamine/Organocation (APC) Family (TC #2.A.3), were correctly predicted with high accuracy while others, such as the Mitochondrial Carrier (MC) (TC #2.A.29) and the K(+) transporter (Trk) families (TC #2.A.38), were predicted with much lower accuracy. For small, topologically homogeneous families, SPOCTOPUS and MEMSAT were generally most reliable, while with large, more diverse superfamilies, HMMTOP often proved to have the greatest prediction accuracy. We next developed a novel program, TM-STATS, that tabulates HMMTOP, SPOCTOPUS or MEMSAT-based topological predictions for any subdivision (class, subclass, superfamily, family, subfamily, or any combination of these) of the Transporter Classification Database (TCDB; www.tcdb.org) and examined the following subclasses: α-type channel proteins (TC subclasses 1.A and 1.E), secreted pore-forming toxins (TC subclass 1.C) and secondary carriers (subclass 2.A). Histograms were generated for each of these subclasses, and the results were analyzed according to subclass, family and protein. The results provide an update of topological predictions for integral membrane transport proteins as well as guides for the development of more reliable topological prediction programs, taking family-specific characteristics into account.
Collapse
Affiliation(s)
- Abhinay Reddy
- Department of Molecular Biology, University of California at San Diego, La Jolla, Calif., USA
| | | | | | | | | | | |
Collapse
|
14
|
Paparoditis P, Vastermark A, Le AJ, Fuerst JA, Saier MH. Bioinformatic analyses of integral membrane transport proteins encoded within the genome of the planctomycetes species, Rhodopirellula baltica. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:193-215. [PMID: 23969110 PMCID: PMC3905805 DOI: 10.1016/j.bbamem.2013.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 02/04/2023]
Abstract
Rhodopirellula baltica (R. baltica) is a Planctomycete, known to have intracellular membranes. Because of its unusual cell structure and ecological significance, we have conducted comprehensive analyses of its transmembrane transport proteins. The complete proteome of R. baltica was screened against the Transporter Classification Database (TCDB) to identify recognizable integral membrane transport proteins. 342 proteins were identified with a high degree of confidence, and these fell into several different classes. R. baltica encodes in its genome channels (12%), secondary carriers (33%), and primary active transport proteins (41%) in addition to classes represented in smaller numbers. Relative to most non-marine bacteria, R. baltica possesses a larger number of sodium-dependent symporters but fewer proton-dependent symporters, and it has dimethylsulfoxide (DMSO) and trimethyl-amine-oxide (TMAO) reductases, consistent with its Na(+)-rich marine environment. R. baltica also possesses a Na(+)-translocating NADH:quinone dehydrogenase (Na(+)-NDH), a Na(+) efflux decarboxylase, two Na(+)-exporting ABC pumps, two Na(+)-translocating F-type ATPases, two Na(+):H(+) antiporters and two K(+):H(+) antiporters. Flagellar motility probably depends on the sodium electrochemical gradient. Surprisingly, R. baltica also has a complete set of H(+)-translocating electron transport complexes similar to those present in α-proteobacteria and eukaryotic mitochondria. The transport proteins identified proved to be typical of the bacterial domain with little or no indication of the presence of eukaryotic-type transporters. However, novel functionally uncharacterized multispanning membrane proteins were identified, some of which are found only in Rhodopirellula species, but others of which are widely distributed in bacteria. The analyses lead to predictions regarding the physiology, ecology and evolution of R. baltica.
Collapse
Affiliation(s)
- Philipp Paparoditis
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Ake Vastermark
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Andrew J. Le
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - John A. Fuerst
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| |
Collapse
|
15
|
Abstract
The Transporter Classification Database (TCDB; http://www.tcdb.org) serves as a common reference point for transport protein research. The database contains more than 10 000 non-redundant proteins that represent all currently recognized families of transmembrane molecular transport systems. Proteins in TCDB are organized in a five level hierarchical system, where the first two levels are the class and subclass, the second two are the family and subfamily, and the last one is the transport system. Superfamilies that contain multiple families are included as hyperlinks to the five tier TC hierarchy. TCDB includes proteins from all types of living organisms and is the only transporter classification system that is both universal and recognized by the International Union of Biochemistry and Molecular Biology. It has been expanded by manual curation, contains extensive text descriptions providing structural, functional, mechanistic and evolutionary information, is supported by unique software and is interconnected to many other relevant databases. TCDB is of increasing usefulness to the international scientific community and can serve as a model for the expansion of database technologies. This manuscript describes an update of the database descriptions previously featured in NAR database issues.
Collapse
Affiliation(s)
- Milton H Saier
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | |
Collapse
|
16
|
Yee DC, Shlykov MA, Västermark A, Reddy VS, Arora S, Sun EI, Saier MH. The transporter-opsin-G protein-coupled receptor (TOG) superfamily. FEBS J 2013; 280:5780-800. [PMID: 23981446 DOI: 10.1111/febs.12499] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 01/27/2023]
Abstract
Visual rhodopsins are recognized members of the large and diverse family of G protein-coupled receptors (GPCRs), but their evolutionary origin and relationships to other proteins are not known. In a previous paper [Shlykov MA, Zheng WH, Chen JS & Saier MH Jr (2012) Biochim Biophys Acta 1818, 703-717], we characterized the 4-toluene sulfonate uptake permease (TSUP) family of transmembrane proteins, and showed that these 7-transmembrane segment (TMS) or 8-TMS proteins arose by intragenic duplication of a gene encoding a 4-TMS protein, sometimes followed by loss of a terminal TMS. In this study, we show that the TSUP, GPCR and microbial rhodopsin families are related to each other and to six other currently recognized transport protein families. We designate this superfamily the transporter/opsin/G protein-coupled receptor (TOG) superfamily. Despite their 8-TMS origins, the members of most constituent families exhibit 7-TMS topologies that are well conserved, and these arose by loss of either the N-terminal TMS (more frequent) or the C-terminal TMS (less frequent), depending on the family. Phylogenetic analyses revealed familial relationships within the superfamily and protein relationships within each of the nine families. The results of the statistical analyses leading to the conclusion of homology were confirmed using hidden Markov models, Pfam and 3D superimpositions. Proteins functioning by dissimilar mechanisms (channels, primary active transporters, secondary active transporters, group translocators and receptors) are interspersed on a phylogenetic tree of the TOG superfamily, suggesting that changes in the transport and energy-coupling mechanisms occurred multiple times during evolution of this superfamily.
Collapse
Affiliation(s)
- Daniel C Yee
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Aboulwafa M, Saier MH. Lipid dependencies, biogenesis and cytoplasmic micellar forms of integral membrane sugar transport proteins of the bacterial phosphotransferase system. MICROBIOLOGY-SGM 2013; 159:2213-2224. [PMID: 23985145 DOI: 10.1099/mic.0.070953-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Permeases of the prokaryotic phosphoenolpyruvate-sugar phosphotransferase system (PTS) catalyse sugar transport coupled to sugar phosphorylation. The lipid composition of a membrane determines the activities of these enzyme/transporters as well as the degree of coupling of phosphorylation to transport. We have investigated mechanisms of PTS permease biogenesis and identified cytoplasmic (soluble) forms of these integral membrane proteins. We found that the catalytic activities of the soluble forms differ from those of the membrane-embedded forms. Transport via the latter is much more sensitive to lipid composition than to phosphorylation, and some of these enzymes are much more sensitive to the lipid environment than others. While the membrane-embedded PTS permeases are always dimeric, the cytoplasmic forms are micellar, either monomeric or dimeric. Scattered published evidence suggests that other integral membrane proteins also exist in cytoplasmic micellar forms. The possible functions of cytoplasmic PTS permeases in biogenesis, intracellular sugar phosphorylation and permease storage are discussed.
Collapse
Affiliation(s)
- Mohammad Aboulwafa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt.,Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H Saier
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
18
|
Reddy BL, Saier MH. Topological and phylogenetic analyses of bacterial holin families and superfamilies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2654-71. [PMID: 23856191 DOI: 10.1016/j.bbamem.2013.07.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 06/28/2013] [Accepted: 07/02/2013] [Indexed: 01/21/2023]
Abstract
Holins are small "hole-forming" transmembrane proteins that mediate bacterial cell lysis during programmed cell death or following phage infection. We have identified fifty two families of established or putative holins and have included representative members of these proteins in the Transporter Classification Database (TCDB; www.tcdb.org). We have identified the organismal sources of members of these families, calculated their average protein sizes, estimated their topologies and determined their relative family sizes. Topological analyses suggest that these proteins can have 1, 2, 3 or 4 transmembrane α-helical segments (TMSs), and members of a single family are frequently, but not always, of a single topology. In one case, proteins of a family proved to have either 2 or 4 TMSs, and the latter arose by intragenic duplication of a primordial 2 TMS protein-encoding gene resembling the former. Using established statistical approaches, some of these families have been shown to be related by common descent. Seven superfamilies, including 21 of the 52 recognized families were identified. Conserved motif and Pfam analyses confirmed most superfamily assignments. These results serve to expand upon the scope of channel-forming bacterial holins.
Collapse
Affiliation(s)
- Bhaskara L Reddy
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA; Department of Mathematics and Natural Sciences, College of Letters and Sciences, National University, Ontario, CA 91764, USA
| | | |
Collapse
|