1
|
Dong X, Tian H, Ren P, Liu Y, Wang L. Downregulation of hsa_circTLK1 represses non-small cell lung cancer progression by regulating miR-876-3p/SRSF7 axis. Heliyon 2024; 10:e31972. [PMID: 38868058 PMCID: PMC11167351 DOI: 10.1016/j.heliyon.2024.e31972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Background This study clarified the expression of cicrTLK1 in non-small cell lung cancer (NSCLC) and explored its role in cancer growth, metastasis and immune escape, providing a potential molecular target and theoretical basis for NSCLC treatment. Methods The expression levels of circTLK1, miR-876-3p and SRSF7 were determined by RT-qPCR assay. The localization of circTLK1 in NSCLC cells was determined by FISH assay. EdU and cell plate clone formation assay were applied to explore cell proliferation. Wound healing test and Transwell assay were applied to measure the migration and invasion ability. Cell apoptosis rate was detected by FCM assay. Western blotting assay was adopted to measure the protein expression of SRSF7. Dual-luciferase reporter gene assay was applied to assess the interaction between miR-876-3p and circTLK1, and between miR-876-3p and SRSF7. The ability of cirTLK1 to regulate tumor formation in vivo was examined by tumor transplantation experiments in nude mice. Results The relative expression of circTLK1 was increased in NSCLC cell lines. Knockdown of circTLK1 prohibited the proliferation, migration, and invasion, and promoted apoptosis rate, but miR-876-3p inhibitor reversed the effects of circTLK1 knockdown. In addition, silencing of circTLK1 overtly restrained the growth of transplanted tumors in vivo, and inhibited immune escape. In addition, circTLK1 interacted with miR-876-3p, and SRSF7 was concluded to be the target gene of miR-876-3p. Conclusion In this study, we researched the inhibitory effect of circTLK1knockdown on NSCLC progression and immune escape, and further elucidated the potential regulatory mechanism of circTLK1/miR876-3p/SRSF7 axis.
Collapse
Affiliation(s)
- Xinzhe Dong
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, China
| | - Hui Tian
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, China
| | - Peng Ren
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, China
| | - Yanxia Liu
- Department of Oncology, Shengli Oil Central Hospital, Dongying, China
| | - Lin Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, China
| |
Collapse
|
2
|
Maharati A, Tolue Ghasaban F, Akhlaghipour I, Taghehchian N, Zangouei AS, Moghbeli M. MicroRNA-495: a therapeutic and diagnostic tumor marker. J Mol Histol 2023; 54:559-578. [PMID: 37759132 DOI: 10.1007/s10735-023-10159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Therapeutic and diagnostic progresses have significantly reduced the mortality rate among cancer patients during the last decade. However, there is still a high rate of mortality among cancer patients. One of the important reasons involved in the high mortality rate is the late diagnosis in advanced tumor stages that causes the failure of therapeutic strategies in these patients. Therefore, investigating the molecular mechanisms involved in tumor progression has an important role in introducing the efficient early detection markers. MicroRNAs (miRNAs) as stable factors in body fluids are always considered as non-invasive diagnostic and prognostic markers. In the present review, we investigated the role of miR-495 in tumor progression. It has been reported that miR-495 has mainly a tumor suppressor function through the regulation of transcription factors and tyrosine kinases as well as cellular processes such as multidrug resistance, chromatin remodeling, and signaling pathways. This review can be an effective step towards introducing the miR-495 as a non-invasive diagnostic/prognostic marker as well as a suitable target in tumor therapy.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Huldani H, Alshahrani SH, Almajidi YQ, Romero-Parra RM, Hjazi A, Alsaab HO, Oudaha KH, Hussien BM, Ahmed M, Fard SRH. miR-495-3p as a promising tumor suppressor in human cancers. Pathol Res Pract 2023; 248:154610. [PMID: 37307621 DOI: 10.1016/j.prp.2023.154610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Noncoding RNAs are a type of cellular RNA not having the ability to translate into proteins. As an important type of ncRNA with a length of about 22 nucleotides (nt), microRNAs were revealed to contribute to regulating the various cellular functions via regulating the protein translation of target genes. Among them, available studies proposed that miR-495-3p is a pivotal player in cancer pathogenesis. These studies showed that the expression level of miR-495-3p decreased in various cancer cells, suggesting its tumor suppressor role in cancer pathogenesis. Long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are the important regulators of miR-495-3p via sponging it, leading to increased expression levels of its target genes. Moreover, miR-495-3p was shown to have a promising potential to be a prognostic and diagnostic biomarker in cancer. MiR-495-3p also could affect the resistance of cancer cells to chemotherapy agents. Here, we discussed the molecular mechanisms of miR-495-3p in various cancer including breast cancer. In addition, we discussed the miR-495-3p potential as a prognostic and diagnostic biomarker as well as its activity in cancer chemotherapy. Finally, we discussed the current limitations regarding the use of microRNAs in clinics and the future prospects of microRNAs.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | | | - Yasir Qasim Almajidi
- Department of pharmacy (pharmaceutics), Baghdad College of Medical Sciences, Baghdad, Iraq
| | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
| | - Khulood H Oudaha
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Muhja Ahmed
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
4
|
Ren L, Jiang Q, Mo L, Tan L, Dong Q, Meng L, Yang N, Li G. Mechanisms of circular RNA degradation. Commun Biol 2022; 5:1355. [PMID: 36494488 PMCID: PMC9734648 DOI: 10.1038/s42003-022-04262-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (CircRNAs) are a class of noncoding RNAs formed by backsplicing during cotranscriptional and posttranscriptional processes, and they widely exist in various organisms. CircRNAs have multiple biological functions and are associated with the occurrence and development of many diseases. While the biogenesis and biological function of circRNAs have been extensively studied, there are few studies on circRNA degradation and only a few pathways for specific circRNA degradation have been identified. Here we outline basic information about circRNAs, summarize the research on the circRNA degradation mechanisms and discusses where this field might head, hoping to provide some inspiration and guidance for scholars who aim to study the degradation of circRNAs.
Collapse
Affiliation(s)
- Longxin Ren
- grid.412017.10000 0001 0266 8918The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Qingshan Jiang
- grid.412017.10000 0001 0266 8918Department of Otolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001 China
| | - Liyi Mo
- grid.412017.10000 0001 0266 8918The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Lijie Tan
- grid.412017.10000 0001 0266 8918The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Qifei Dong
- grid.412017.10000 0001 0266 8918The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Lijuan Meng
- grid.412017.10000 0001 0266 8918Department of Ultrasonography, Second Affiliated Hospital, University of South China, Hengyang Hunan, 421001 China
| | - Nanyang Yang
- grid.412017.10000 0001 0266 8918The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Guoqing Li
- grid.412017.10000 0001 0266 8918The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| |
Collapse
|
5
|
Rashedi S, Mardani M, Rafati A, Khavandi MM, Mohammadi F, Javanshir S, Sarallah R, Dolatshahi M, Sabahi M, Azadnajafabad S, Tavolinejad H, Rezaei N. Circular RNAs as prognostic and diagnostic biomarkers in renal cell carcinoma. J Clin Lab Anal 2022; 36:e24670. [PMID: 35989533 PMCID: PMC9550963 DOI: 10.1002/jcla.24670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play pivotal roles in proliferation, apoptosis, migration, and invasion of renal cell carcinoma (RCC) cells. This study is aimed to systematically summarize the current evidence regarding the clinical implications of circRNAs in RCC patients. METHODS A systematic search in PubMed, Embase, and Web of Science was performed until January 1, 2022. The correlation between the expression of circRNAs and clinicopathological, prognostic, and diagnostic features of RCC was evaluated using the meta-analysis. RESULTS Ultimately, 41 studies with 3485 RCC patients were included in this study: 26 studies for clinicopathological features, 31 studies for prognosis, and eight studies for diagnosis. Altered expression of circRNAs was significantly associated with clinicopathological characteristics of RCC, including tumor size, tumor stage, lymph node metastasis, distant metastasis, and TNM stage. The tumor promoter circRNAs were associated with reduced overall survival (OS) (Hazard Ratio (HR) = 1.98, 95% confidence interval [CI] 1.68-2.34) and disease/progression/recurrence-free survival (DFS/PFS/RFS) (HR = 2.34, 95% CI 1.85-2.97). Contrarily, the tumor suppressor circRNAs were linked with better OS (HR = 0.49, 95% CI 0.40-0.60) and DFS/PFS/RFS (HR = 0.40, 95% CI 0.28-0.59). The pooled sensitivity and specificity of circRNAs for RCC diagnosis in tissue samples were both 0.84. These results in fluid samples (serum and urine) were 0.78 and 0.69, respectively. CONCLUSION CircRNAs can serve as promising diagnostic and prognostic biomarkers for RCC.
Collapse
Affiliation(s)
- Sina Rashedi
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- Tehran Heart CenterCardiovascular Diseases Research Institute, Tehran University of Medical SciencesTehranIran
| | - Mahta Mardani
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Ali Rafati
- Rajai Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | | | | | - Salar Javanshir
- School of Medicine, Tehran Medical Sciences BranchIslamic Azad UniversityTehranIran
| | - Rojin Sarallah
- School of Medicine, Tehran Medical Sciences BranchIslamic Azad UniversityTehranIran
| | - Mahsa Dolatshahi
- NeuroImaging Network (NIN)Universal Scientific Education and Research Network (USERN), Tehran University of Medical SciencesTehranIran
| | - Mohammadmahdi Sabahi
- Neurosurgery Research Group (NRG), Student Research CommitteeHamadan University of Medical SciencesHamadanIran
| | - Sina Azadnajafabad
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
- Department of SurgeryTehran University of Medical SciencesTehranIran
| | - Hamed Tavolinejad
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
- Tehran Heart CenterCardiovascular Diseases Research Institute, Tehran University of Medical SciencesTehranIran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- Research Center for ImmunodeficienciesChildren's Medical CenterTehran University of Medical SciencesTehranIran
- Department of ImmunologySchool of MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
6
|
Osca-Verdegal R, Beltrán-García J, Górriz JL, Martínez Jabaloyas JM, Pallardó FV, García-Giménez JL. Use of Circular RNAs in Diagnosis, Prognosis and Therapeutics of Renal Cell Carcinoma. Front Cell Dev Biol 2022; 10:879814. [PMID: 35813211 PMCID: PMC9257016 DOI: 10.3389/fcell.2022.879814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma is the most common type of kidney cancer, representing 90% of kidney cancer diagnoses, and the deadliest urological cancer. While the incidence and mortality rates by renal cell carcinoma are higher in men compared to women, in both sexes the clinical characteristics are the same, and usually unspecific, thereby hindering and delaying the diagnostic process and increasing the metastatic potential. Regarding treatment, surgical resection remains the main therapeutic strategy. However, even after radical nephrectomy, metastasis may still occur in some patients, with most metastatic renal cell carcinomas being resistant to chemotherapy and radiotherapy. Therefore, the identification of new biomarkers to help clinicians in the early detection, and treatment of renal cell carcinoma is essential. In this review, we describe circRNAs related to renal cell carcinoma processes reported to date and propose the use of some in therapeutic strategies for renal cell carcinoma treatment.
Collapse
Affiliation(s)
- Rebeca Osca-Verdegal
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Jesús Beltrán-García
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - José Luis Górriz
- Department of Nephrology, University Clinic Hospital, INCLIVA, University of Valencia, Valencia, Spain
| | | | - Federico V. Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Valencia, Spain
- *Correspondence: José Luis García-Giménez,
| |
Collapse
|
7
|
Shi X, Song S, Gao Y, Cui Z, Wang W, Liu M. Circ_0037866 Contributes to the Tumorigenesis of Renal Cell Carcinoma by Sequestering miR-384 to Elevate Chromobox 5 Expression. Kidney Blood Press Res 2022; 47:329-340. [PMID: 35249038 DOI: 10.1159/000522190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/23/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) were demonstrated to have roles in the carcinogenesis of renal cell carcinoma (RCC). Hence, this work aimed to determine the functions and molecular mechanism of circ_0037866 in regulating the progression of RCC. METHODS Quantitative real-time polymerase chain reaction and Western blotting were used to detect the levels of genes and proteins. In vitro assays, including colony formation, 5-ethynyl-2'-deoxyuridine, flow cytometry, transwell assays, and in vivo tumor formation, were conducted to investigate the effects of circ_0037866 on RCC tumorigenesis. Dual-luciferase reporter assay, RNA pull-down, and RNA immunoprecipitation assay were used to confirm the interaction between miR-384 and circ_0037866 or Chromobox 5 (CBX5). RESULTS Circ_0037866 is a stable circRNA and was found to be increased in RCC tissues and cells. Functionally, circ_0037866 silencing suppressed RCC cell survival, invasion, and migration in vitro, and impeded RCC cell tumorigenesis in the subcutaneous xenograft model. Mechanistically, circ_0037866 could function as a sponge for miR-384 to elevate the expression of its target CBX5. Furthermore, a series of rescue experiments showed that miR-384 inhibition reversed the anticancer effects of circ_0037866 knockdown on RCC cells; besides that, miR-384 restoration suppressed RCC cell growth and mobility, which were attenuated by CBX5 overexpression. CONCLUSION Circ_0037866 knockdown restrains the tumorigenesis of RCC by miR-384/CBX5, revealing a promising molecular target for RCC therapy.
Collapse
Affiliation(s)
- Xiaoqiang Shi
- Department of Urology, Affiliated Hospital of Hebei University, Baoding, China
| | - Shichao Song
- Department of Urology, Affiliated Hospital of Hebei University, Baoding, China
| | - Ying Gao
- Department of Urology, Affiliated Hospital of Hebei University, Baoding, China
| | - Zhenyu Cui
- Department of Urology, Affiliated Hospital of Hebei University, Baoding, China
| | - Wentao Wang
- Department of Urology, Affiliated Hospital of Hebei University, Baoding, China
| | - Mingkai Liu
- Department of Urology, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
8
|
Rincón-Riveros A, Rodríguez JA, Villegas VE, López-Kleine L. Identification of Two Exosomal miRNAs in Circulating Blood of Cancer Patients by Using Integrative Transcriptome and Network Analysis. Noncoding RNA 2022; 8:33. [PMID: 35645340 PMCID: PMC9149928 DOI: 10.3390/ncrna8030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Exosomes carry molecules of great biological and clinical interest, such as miRNAs. The contents of exosomes vary between healthy controls and cancer patients. Therefore, miRNAs and other molecules transported in exosomes are considered a potential source of diagnostic and prognostic biomarkers in cancer. Many miRNAs have been detected in recent years. Consequently, a substantial amount of miRNA-related data comparing patients and healthy individuals is available, which contributes to a better understanding of the initiation, development, malignancy, and metastasis of cancer using non-invasive sampling procedures. However, a re-analysis of available ncRNA data is rare. This study used available data about miRNAs in exosomes comparing healthy individuals and cancer patients to identify possible global changes related to the presence of cancer. A robust transcriptomic analysis identified two common miRNAs (miR-495-3p and miR-543) deregulated in five cancer datasets. They had already been implicated in different cancers but not reported in exosomes circulating in blood. The study also examined their target genes and the implications of these genes for functional processes.
Collapse
Affiliation(s)
- Andrés Rincón-Riveros
- Bioinformatics and Systems Biology Group, Universidad Nacional de Colombia, Bogotá 111221, Colombia
| | | | - Victoria E Villegas
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia
| | - Liliana López-Kleine
- Department of Statistics, Faculty of Science, Universidad Nacional de Colombia, Bogotá 111221, Colombia
| |
Collapse
|
9
|
Zhang L, Li Z, Mao L, Wang H. Circular RNA in Acute Central Nervous System Injuries: A New Target for Therapeutic Intervention. Front Mol Neurosci 2022; 15:816182. [PMID: 35392276 PMCID: PMC8981151 DOI: 10.3389/fnmol.2022.816182] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/28/2022] [Indexed: 01/10/2023] Open
Abstract
Acute central nervous system (CNS) injuries, including ischemic stroke, traumatic brain injury (TBI), spinal cord injury (SCI) and subarachnoid hemorrhage (SAH), are the most common cause of death and disability around the world. As a kind of non-coding ribonucleic acids (RNAs) with endogenous and conserve, circular RNAs (circRNAs) have recently attracted great attentions due to their functions in diagnosis and treatment of many diseases. A large number of studies have suggested that circRNAs played an important role in brain development and involved in many neurological disorders, particularly in acute CNS injuries. It has been proposed that regulation of circRNAs could improve cognition function, promote angiogenesis, inhibit apoptosis, suppress inflammation, regulate autophagy and protect blood brain barrier (BBB) in acute CNS injuries via different molecules and pathways including microRNA (miRNA), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), ph1osphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/AKT), Notch1 and ten-eleven translocation (TET). Therefore, circRNAs showed great promise as potential targets in acute CNS injuries. In this article, we present a review highlighting the roles of circRNAs in acute CNS injuries. Hence, on the basis of these properties and effects, circRNAs may be developed as therapeutic agents for acute CNS injury patients.
Collapse
|
10
|
Zhou Y, Li C, Wang Z, Tan S, Liu Y, Zhang H, Li X. CircRNAs as Novel Biomarkers and Therapeutic Targets in Renal Cell Carcinoma. Front Mol Biosci 2022; 9:833079. [PMID: 35223991 PMCID: PMC8874010 DOI: 10.3389/fmolb.2022.833079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/24/2022] [Indexed: 12/28/2022] Open
Abstract
Circular RNAs (circRNAs) are a type of long non-coding RNA with covalently closed loops that are naturally resistant to exoribonuclease. With the rapid development of high-throughput sequencing technologies and bioinformatics, increasing data suggest that circRNAs are abnormally expressed in renal cell carcinoma (RCC) and act as important regulators of RCC carcinogenesis and progression. CircRNAs play important biological roles in modulating cell proliferation, migration, invasion, apoptosis, and gemcitabine chemoresistance in RCC. Most of the circRNAs studied in RCC have been reported to be significantly associated with many clinicopathologic characteristics and survival parameters of RCC. The stability and specificity of circRNAs enable them potential molecular markers for RCC diagnosis and prognosis. Moreover, circRNAs have emerged as targets for developing new therapies, because they can regulate various signaling pathways associated with RCC initiation and progression. In this review, we briefly summarize the biogenesis, degradation, and biological functions of circRNAs as well as the potential clinical applications of these molecules for RCC diagnosis, prognosis, and targeted therapy.
Collapse
Affiliation(s)
- Yuxia Zhou
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Cheng Li
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhenping Wang
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuangfeng Tan
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Yiqi Liu
- The Second Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, China
| | - Hu Zhang
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuefeng Li
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Xuefeng Li,
| |
Collapse
|
11
|
Wang W, Xie S, Yuan D, He D, Fang L, Ge F. Systematic Review With Meta-Analysis: Diagnostic, Prognostic and Clinicopathological Significance of CircRNA Expression in Renal Cancer. Front Oncol 2022; 11:773236. [PMID: 35155185 PMCID: PMC8832283 DOI: 10.3389/fonc.2021.773236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
Background Renal cancer (RC) is one of the most common malignant tumors of the urinary system, and molecular targets for the specific diagnosis and treatment of RC have been widely explored. The purpose of this study was to systematically analyze circular RNAs (circRNAs), which may serve as novel tumor markers in terms of the diagnosis, prognosis and clinicopathological characteristics of RC. Methods PubMed and Web of Science were systematically searched for literature as up to July 30, 2021. All included studies were evaluated by the evaluation system, and the results were satisfactory. Hazard ratios (HRs) and odds ratios (ORs) were used to assess the association of circRNAs with diagnostic and clinicopathological indicators. The sensitivity (SEN), specificity (SPE), positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio and area under the summary receiver operating characteristic curve (AUC) were combined to evaluate the diagnostic performance of circRNAs in RC. Results We included 22 studies that met the criteria, including 18 that were prognostic, 4 that were diagnostic, and 12 that were clinicopathologically relevant. In terms of prognosis, we found that upregulated circRNAs were positively associated with poor overall survival in patients with RC (HR=1.63, 95% CI=1.43–1.85). In terms of diagnosis, the combined SEN, SPE and AUC of circRNAs in the diagnosis of RC were 0.82, 0.84 and 0.89 (0.86–0.91), respectively. In terms of clinicopathological features, upregulated circRNAs were associated with the Fuhrman grade (OR=0.641, 95% CI=0.471–0.873), T stage (OR=0.236, 95% CI=0.141–0.396), TNM stage (OR=0.225, 95% CI=0.158–0.321) and lymphatic metastasis (OR=0.329, 95% CI=0.193–0.560). Conclusion Our meta-analysis confirms that circRNAs may be candidate biomarkers for the diagnosis, prognosis, and clinicopathological indicators of RC.
Collapse
Affiliation(s)
- Wujun Wang
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Shengfang Xie
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, China
| | - Dongping Yuan
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Dandan He
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, China
| | - Liming Fang
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, China
- *Correspondence: Liming Fang, ; Fengfeng Ge,
| | - Fengfeng Ge
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, China
- *Correspondence: Liming Fang, ; Fengfeng Ge,
| |
Collapse
|