1
|
You JR, Wen ZJ, Tian JW, Lv XB, Li R, Li SP, Xin H, Li PF, Zhang YF, Zhang R. Crosstalk between ubiquitin ligases and ncRNAs drives cardiovascular disease progression. Front Immunol 2024; 15:1335519. [PMID: 38515760 PMCID: PMC10954775 DOI: 10.3389/fimmu.2024.1335519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Cardiovascular diseases (CVDs) are multifactorial chronic diseases and have the highest rates of morbidity and mortality worldwide. The ubiquitin-proteasome system (UPS) plays a crucial role in posttranslational modification and quality control of proteins, maintaining intracellular homeostasis via degradation of misfolded, short-lived, or nonfunctional regulatory proteins. Noncoding RNAs (ncRNAs, such as microRNAs, long noncoding RNAs, circular RNAs and small interfering RNAs) serve as epigenetic factors and directly or indirectly participate in various physiological and pathological processes. NcRNAs that regulate ubiquitination or are regulated by the UPS are involved in the execution of target protein stability. The cross-linked relationship between the UPS, ncRNAs and CVDs has drawn researchers' attention. Herein, we provide an update on recent developments and perspectives on how the crosstalk of the UPS and ncRNAs affects the pathological mechanisms of CVDs, particularly myocardial ischemia/reperfusion injury, myocardial infarction, cardiomyopathy, heart failure, atherosclerosis, hypertension, and ischemic stroke. In addition, we further envision that RNA interference or ncRNA mimics or inhibitors targeting the UPS can potentially be used as therapeutic tools and strategies.
Collapse
Affiliation(s)
- Jia-Rui You
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Zeng-Jin Wen
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Jia-Wei Tian
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiao-Bing Lv
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Rong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Shu-Ping Li
- Department of Cardiology, The Affiliated Qingdao Third People’s Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Rui Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Liu Q, Wang Y, Zhang T, Fang J, Meng S. Circular RNAs in vascular diseases. Front Cardiovasc Med 2023; 10:1247434. [PMID: 37840954 PMCID: PMC10570532 DOI: 10.3389/fcvm.2023.1247434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Vascular diseases are the leading cause of morbidity and mortality worldwide and are urgently in need of diagnostic biomarkers and therapeutic strategies. Circular RNAs (circRNAs) represent a unique class of RNAs characterized by a circular loop configuration and have recently been identified to possess a wide variety of biological functions. CircRNAs exhibit exceptional stability, tissue specificity, and are detectable in body fluids, thus holding promise as potential biomarkers. Their encoding function and stable gene expression also position circRNAs as an excellent alternative to gene therapy. Here, we briefly review the biogenesis, degradation, and functions of circRNAs. We summarize circRNAs discovered in major vascular diseases such as atherosclerosis and aneurysms, with a particular focus on molecular mechanisms of circRNAs identified in vascular endothelial cells and smooth muscle cells, in the hope to reveal new directions for mechanism, prognosis and therapeutic targets of vascular diseases.
Collapse
Affiliation(s)
| | | | | | | | - Shu Meng
- Department of Basic Science Research, Guangzhou Laboratory, Guangzhou, China
| |
Collapse
|
3
|
Chen W, Liu Y, Li L, Liang B, Wang S, Xu X, Xing D, Wu X. The potential role and mechanism of circRNAs in foam cell formation. Noncoding RNA Res 2023; 8:315-325. [PMID: 37032721 PMCID: PMC10074414 DOI: 10.1016/j.ncrna.2023.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/02/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023] Open
Abstract
Atherosclerosis is a significant risk factor for coronary heart disease (CHD) and myocardial infarction (MI). Atherosclerosis develops during foam cell generation, which is caused by an imbalance in cholesterol uptake, esterification, and efflux. LOX-1, SR-A1, and CD36 all increased cholesterol uptake. ACAT1 and ACAT2 promote free cholesterol (FC) esterification to cholesteryl esters (CE). The hydrolysis of CE to FC was aided by nCEH. FC efflux was promoted by ABCA1, ABCG1, ADAM10, and apoA-I. SR-BI promotes not only cholesterol uptake but also FC efflux. Circular RNAs (circRNAs), which are single-stranded RNAs with a closed covalent circular structure, have emerged as promising biomarkers and therapeutic targets for atherosclerosis due to their highly tissue, cell, and disease state-specific expression profiles. Numerous studies have shown that circRNAs regulate foam cell formation, acting as miRNA sponges to influence atherosclerosis development by regulating the expression of SR-A1, CD36, ACAT2, ABCA1, ABCG1, ADAM10, apoA-I, SR-B1. Several circRNAs, including circ-Wdr91, circ 0004104, circRNA0044073, circRNA_0001805, circDENND1B, circRSF1, circ 0001445, and circRNA 102682, are potential biomarkers for atherosclerosis to better evaluate cardiovascular risk. It is difficult to deliver synthetic therapeutic circRNAs to the desired target tissues. Nanotechnology, such as GA-RM/GZ/PL, may be an important solution to this problem. In this review, we focus on the potential role and mechanism of circRNA/miRNA axis in foam cell formation in the hopes of discovering new targets for the diagnosis, prevention, and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wujun Chen
- Department of Orthopedics, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China
| | - Yihui Liu
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, Key Laboratory of Precision Radiation Therapy for Tumors in Weifang City, School of Medical Imaging, Weifang Medical University, Weifang, Shandong, 261031, China
| | - Ling Li
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Bing Liang
- Department of Orthopedics, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China
| | - Shuai Wang
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, Key Laboratory of Precision Radiation Therapy for Tumors in Weifang City, School of Medical Imaging, Weifang Medical University, Weifang, Shandong, 261031, China
| | - Xiaodan Xu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Corresponding author.
| | - Dongming Xing
- Department of Orthopedics, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Corresponding author. Department of Orthopedics, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China.
| | - Xiaolin Wu
- Department of Orthopedics, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China
- Corresponding author. Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China.
| |
Collapse
|
4
|
Dergunova LV, Vinogradina MA, Filippenkov IB, Limborska SA, Dergunov AD. Circular RNAs Variously Participate in Coronary Atherogenesis. Curr Issues Mol Biol 2023; 45:6682-6700. [PMID: 37623241 PMCID: PMC10453518 DOI: 10.3390/cimb45080422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Over the past decade, numerous studies have shown that circular RNAs (circRNAs) play a significant role in coronary artery atherogenesis and other cardiovascular diseases. They belong to the class of non-coding RNAs and arise as a result of non-canonical splicing of premature RNA, which results in the formation of closed single-stranded circRNA molecules that lack 5'-end caps and 3'-end poly(A) tails. circRNAs have broad post-transcriptional regulatory activity. Acting as a sponge for miRNAs, circRNAs compete with mRNAs for binding to miRNAs, acting as competing endogenous RNAs. Numerous circRNAs are involved in the circRNA-miRNA-mRNA regulatory axes associated with the pathogenesis of cardiomyopathy, chronic heart failure, hypertension, atherosclerosis, and coronary artery disease. Recent studies have shown that сirc_0001445, circ_0000345, circ_0093887, сircSmoc1-2, and circ_0003423 are involved in the pathogenesis of coronary artery disease (CAD) with an atheroprotective effect, while circ_0002984, circ_0029589, circ_0124644, circ_0091822, and circ_0050486 possess a proatherogenic effect. With their high resistance to endonucleases, circRNAs are promising diagnostic biomarkers and therapeutic targets. This review aims to provide updated information on the involvement of atherogenesis-related circRNAs in the pathogenesis of CAD. We also discuss the main modern approaches to detecting and studying circRNA-miRNA-mRNA interactions, as well as the prospects for using circRNAs as biomarkers and therapeutic targets for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Liudmila V. Dergunova
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (M.A.V.); (I.B.F.); (S.A.L.)
| | - Margarita A. Vinogradina
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (M.A.V.); (I.B.F.); (S.A.L.)
| | - Ivan B. Filippenkov
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (M.A.V.); (I.B.F.); (S.A.L.)
| | - Svetlana A. Limborska
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (M.A.V.); (I.B.F.); (S.A.L.)
| | - Alexander D. Dergunov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky Street 10, Moscow 101990, Russia;
| |
Collapse
|
5
|
Triska J, Mathew C, Zhao Y, Chen YE, Birnbaum Y. Circular RNA as Therapeutic Targets in Atherosclerosis: Are We Running in Circles? J Clin Med 2023; 12:4446. [PMID: 37445481 DOI: 10.3390/jcm12134446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Much attention has been paid lately to harnessing the diagnostic and therapeutic potential of non-coding circular ribonucleic acids (circRNAs) and micro-RNAs (miRNAs) for the prevention and treatment of cardiovascular diseases. The genetic environment that contributes to atherosclerosis pathophysiology is immensely complex. Any potential therapeutic application of circRNAs must be assessed for risks, benefits, and off-target effects in both the short and long term. A search of the online PubMed database for publications related to circRNA and atherosclerosis from 2016 to 2022 was conducted. These studies were reviewed for their design, including methods for developing atherosclerosis and the effects of the corresponding atherosclerotic environment on circRNA expression. Investigated mechanisms were recorded, including associated miRNA, genes, and ultimate effects on cell mechanics, and inflammatory markers. The most investigated circRNAs were then further analyzed for redundant, disparate, and/or contradictory findings. Many disparate, opposing, and contradictory effects were observed across experiments. These include levels of the expression of a particular circRNA in atherosclerotic environments, attempted ascertainment of the in toto effects of circRNA or miRNA silencing on atherosclerosis progression, and off-target, cell-specific, and disease-specific effects. The high potential for detrimental and unpredictable off-target effects downstream of circRNA manipulation will likely render the practice of therapeutic targeting of circRNA or miRNA molecules not only complicated but perilous.
Collapse
Affiliation(s)
- Jeffrey Triska
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christo Mathew
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang Zhao
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yuqing E Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yochai Birnbaum
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
Cheng C, Wang Y, Xue Q, Huang Y, Wang X, Liao F, Miao C. CircRnas in atherosclerosis, with special emphasis on the spongy effect of circRnas on miRnas. Cell Cycle 2023; 22:527-541. [PMID: 36229933 PMCID: PMC9928460 DOI: 10.1080/15384101.2022.2133365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 10/04/2022] [Indexed: 11/03/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease, which leads to atherosclerotic rupture, lumen stenosis and thrombosis, and often endangers life. Circular RNAs (circRNAs) are a special class of non-coding RNA molecules, whose abnormal expression has been proved to be closely related to human diseases, including AS. Both the abnormal regulation of circRNAs and the sponging effect on miRNAs would lead to changes in gene expression in the form of epigenetic modification, ultimately leading to the formation of AS. CircRNAs can be used as peripheral blood markers of AS, and play an important regulatory role in the proliferation, migration, inflammation and apoptosis of vascular smooth muscle cells, endothelial cells and macrophage, which are key cells for the development of AS. The in-depth understanding of circRNAs in AS not only provides a new method for the diagnosis of AS, but also provides a new idea for the treatment of AS.
Collapse
Affiliation(s)
- Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yuting Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Faxue Liao
- Department of Orthopaedics, the First Affiliated Hospital, Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Rheumatism, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
7
|
Ghafouri-Fard S, Poornajaf Y, Hussen BM, Abak A, Shoorei H, Taheri M, Sharifi G. Implication of non-coding RNA-mediated ROCK1 regulation in various diseases. Front Mol Biosci 2022; 9:986722. [PMID: 36177350 PMCID: PMC9513225 DOI: 10.3389/fmolb.2022.986722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Rho Associated Coiled-Coil Containing Protein Kinase 1 (ROCK1) is a protein serine/threonine kinase which is activated upon binding with the GTP-bound form of Rho. This protein can modulate actin-myosin contraction and stability. Moreover, it has a crucial role in the regulation of cell polarity. Therefore, it participates in modulation of cell morphology, regulation of expression of genes, cell proliferation and differentiation, apoptotic processes as well as oncogenic processes. Recent studies have highlighted interactions between ROCK1 and several non-coding RNAs, namely microRNAs, circular RNAs and long non-coding RNAs. Such interactions can be a target of medications. In fact, it seems that the interactions are implicated in therapeutic response to several medications. In the current review, we aimed to explain the impact of these interactions in the pathoetiology of cancers as well as non-malignant disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Atefe Abak
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Guive Sharifi,
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Guive Sharifi,
| |
Collapse
|
8
|
Wang LT, Huang H, Chang YH, Wang YQ, Wang JD, Cai ZH, Efferth T, Fu YJ. Biflavonoids from Ginkgo biloba leaves as a novel anti-atherosclerotic candidate: Inhibition potency and mechanistic analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154053. [PMID: 35567993 DOI: 10.1016/j.phymed.2022.154053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 02/14/2022] [Accepted: 03/13/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Ginkgo biloba L. is one of the oldest trees on earth, and its leaves have been used since ages as herbal medicine to treat cerebrovascular disorders. It is worth noting that in addition to the widely concerned flavonoids and terpenoids, it also contains various thus far neglected biflavonoids. In fact, biflavonoids are flavonoids consisting of apigenin or its derivatives as monomeric scaffold, and are linked via C-C or C-O-C bond. PURPOSE Based on the structural similarity of flavonoids, we hypothesized that biflavonoids may play a potential role in the treatment of cerebrovascular diseases. Here, we describe the effectiveness and underlying mechanisms for prevention and treatment of atherosclerosis (AS) by biflavonoids. STUDY DESIGN AND METHODS Four main biflavonoids in Ginkgo biloba leaves were screened by oleic acid-induced lipid production in HepG2 cells. The non-covalent effects of biflavonoids on the potential targets of atherosclerosis were screened by reverse targeting and molecular dynamics simulation. The interactions between biflavonoids and potential targets were evaluated by an exogenous cell model, which verified the consistency of the simulation results. CONCLUSION Among all four biflavonoids, ginkgetin significantly inhibited oleic acid-induced lipid production in HepG2 cells and reduced total cholesterol and triglyceride levels. The interaction of ginkgetin with CDK2 through π-alkyl and hydrogen bonds increased the binding of molecules and proteins. Ginkgetin arrested the cells in the G1-S phase, which significantly inhibited abnormal cell growth which closely related to the occurrence and development of atherosclerosis. Biflavonoids could be a promising natural medicine for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Li-Tao Wang
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China; The Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 100083, Beijing, PR China
| | - Han Huang
- Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yuan-Hang Chang
- Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yan-Qiu Wang
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China; The Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 100083, Beijing, PR China
| | - Jian-Dong Wang
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China; The Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 100083, Beijing, PR China
| | - Zi-Hui Cai
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China; The Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 100083, Beijing, PR China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Mainz 55128, Germany
| | - Yu-Jie Fu
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China; The Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 100083, Beijing, PR China.
| |
Collapse
|
9
|
A novel circUBR4/miR-491-5p/NRP2 ceRNA network regulates oxidized low-density lipoprotein-induced proliferation and migration in vascular smooth muscle cells. J Cardiovasc Pharmacol 2021; 79:512-522. [PMID: 34935701 DOI: 10.1097/fjc.0000000000001204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 11/28/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Vascular smooth muscle cells (VSMCs) play critical roles in the progression of atherosclerosis. Circular RNA (circRNA) ubiquitin protein ligase E3 component n-recognin 4 (circUBR4) has been shown to regulate VSMC migration and proliferation. Here, we sought to identify the mechanism in the regulation of circUBR4. CircUBR4, microRNA (miR)-491-5p and Neuropilin-2 (NRP2) were quantified by quantitative real-time PCR (qRT-PCR) and western blot. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8) and 5-Ethynyl-2'-Deoxyuridine (EDU) assays. Cell migration was examined by wound-healing and transwell invasion assays. The direct relationship between miR-491-5p and circUBR4 or NRP2 was validated by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Our data indicated that in VSMCs, ox-LDL induced circUBR4 expression. Silencing endogenous circUBR4 attenuated VSMC proliferation and migration induced by ox-LDL. Mechanistically, circUBR4 targeted miR-491-5p by pairing to miR-491-5p. Moreover, miR-491-5p was identified as a downstream mediator of circUBR4 function in ox-LDL-treated VSMCs. NRP2 was a direct target of miR-491-5p, and circUBR4 acted as a competing endogenous RNA (ceRNA) for miR-491-5p to regulate NRP2 expression. Additionally, NRP2 was a functionally downstream effector of miR-491-5p in regulating ox-LDL-evoked VSMC proliferation and migration. Our findings identify a new ceRNA network, the circUBR4/miR-491-5p/NRP2 axis, for the regulation of circUBR4 in VSMC migration and proliferation.
Collapse
|
10
|
Li F, Chen Y, He Z, Wang C, Wang X, Pan G, Peng JY, Chen Q, Wang X. Hsa_circ_0001879 promotes the progression of atherosclerosis by regulating the proliferation and migration of oxidation of low density lipoprotein (ox-LDL)-induced vascular endothelial cells via the miR-6873-5p-HDAC9 axis. Bioengineered 2021; 12:10420-10429. [PMID: 34872444 PMCID: PMC8809926 DOI: 10.1080/21655979.2021.1997224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Atherosclerosis (AS) is a typical vascular disease. Emerging evidence has shown that circRNAs play key roles in the progression of AS, but the potential function and underlying mechanism of hsa_circ_0001879 remains unknown. We detected the expression level of hsa_circ_0001879 was determined by qRT-PCR, and the proliferation rate and migration ability of HUVECs were measured by CCK-8 assay and Transwell assay, respectively. Proliferative markers and epithelium mesenchymal transition (EMT) markers were measured through immunoblotting. A dual luciferase activity assay was performed to detect the interaction between circRNAs, miRNAs, and mRNAs. Hsa_circ_0001879 was upregulated in AS patients. Hsa_circ_0001879 inhibited the proliferation and migration ability of Human umbilical vein endothelial cells (HUVECs). Hsa_circ_0001879 directly bound to miR-6873-5p and acted as a sponge. miR-6873-5p-induced HDAC9 mRNA degradation was inhibited by hsa_circ_0001879. Hsa_circ_0001879 decreased the proliferation and migration of HUVECs by inhibiting miR-6873-5p-induced HDAC9 degradation.
Collapse
Affiliation(s)
- Feifei Li
- Department of Cardiology, Guangdong Provincial Hospital of Traditional Chinese Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yahui Chen
- Department of Cardiology, Guangdong Provincial Hospital of Traditional Chinese Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhiling He
- Department of Cardiology, Guangdong Provincial Hospital of Traditional Chinese Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chuangchang Wang
- Department of Cardiology, Guangdong Provincial Hospital of Traditional Chinese Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoli Wang
- Department of Cardiology, Guangdong Provincial Hospital of Traditional Chinese Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Guangming Pan
- Department of Cardiology, Guangdong Provincial Hospital of Traditional Chinese Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiang Yang Peng
- Department of Cardiology, Guangdong Provincial Hospital of Traditional Chinese Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qiuxiong Chen
- Department of Cardiology, Guangdong Provincial Hospital of Traditional Chinese Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xia Wang
- Department of Cardiology, Guangdong Provincial Hospital of Traditional Chinese Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|