1
|
Characteristic of the Ascorbate Oxidase Gene Family in Beta vulgaris and Analysis of the Role of AAO in Response to Salinity and Drought in Beet. Int J Mol Sci 2022; 23:ijms232112773. [PMID: 36361565 PMCID: PMC9654295 DOI: 10.3390/ijms232112773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 12/02/2022] Open
Abstract
Ascorbate oxidase, which is known to play a key role in regulating the redox state in the apoplast, cell wall metabolism, cell expansion and abiotic stress response in plants, oxidizes apo-plastic ascorbic acid (AA) to dehydroascorbic acid (DHA). However, there is little information about the AAO genes and their functions in beets under abiotic stress. The term salt or drought stress refers to the treatment of plants with slow and gradual salinity/drought. Contrastingly, salt shock consists of exposing plants to high salt levels instantaneously and drought shock occurs under fast drought progression. In the present work, we have subjected plants to salinity or drought treatments to elicit either stress or shock and carried out a genome-wide analysis of ascorbate oxidase (AAO) genes in sugar beet (B. vulgaris cv. Huzar) and its halophytic ancestor (B. maritima). Here, conserved domain analyses showed the existence of twelve BvAAO gene family members in the genome of sugar beet. The BvAAO_1-12 genes are located on chromosomes 4, 5, 6, 8 and 9. The phylogenetic tree exhibited the close relationships between BvAAO_1-12 and AAO genes of Spinacia oleracea and Chenopodium quinoa. In both beet genotypes, downregulation of AAO gene expression with the duration of salt stress or drought treatment was observed. This correlated with a decrease in AAO enzyme activity under defined experimental setup. Under salinity, the key downregulated gene was BvAAO_10 in Beta maritima and under drought the BvAAO_3 gene in both beets. This phenomenon may be involved in determining the high tolerance of beet to salinity and drought.
Collapse
|
2
|
Yolcu S, Alavilli H, Ganesh P, Panigrahy M, Song K. Salt and Drought Stress Responses in Cultivated Beets ( Beta vulgaris L.) and Wild Beet ( Beta maritima L.). PLANTS (BASEL, SWITZERLAND) 2021; 10:1843. [PMID: 34579375 PMCID: PMC8472689 DOI: 10.3390/plants10091843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/22/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
Cultivated beets, including leaf beets, garden beets, fodder beets, and sugar beets, which belong to the species Beta vulgaris L., are economically important edible crops that have been originated from a halophytic wild ancestor, Beta maritima L. (sea beet or wild beet). Salt and drought are major abiotic stresses, which limit crop growth and production and have been most studied in beets compared to other environmental stresses. Characteristically, beets are salt- and drought-tolerant crops; however, prolonged and persistent exposure to salt and drought stress results in a significant drop in beet productivity and yield. Hence, to harness the best benefits of beet cultivation, knowledge of stress-coping strategies, and stress-tolerant beet varieties, are prerequisites. In the current review, we have summarized morpho-physiological, biochemical, and molecular responses of sugar beet, fodder beet, red beet, chard (B. vulgaris L.), and their ancestor, wild beet (B. maritima L.) under salt and drought stresses. We have also described the beet genes and noncoding RNAs previously reported for their roles in salt and drought response/tolerance. The plant biologists and breeders can potentiate the utilization of these resources as prospective targets for developing crops with abiotic stress tolerance.
Collapse
Affiliation(s)
- Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
| | - Pushpalatha Ganesh
- Department of Plant Biotechnology, M. S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Khurda 761211, Odisha, India;
| | - Madhusmita Panigrahy
- Biofuel & Bioprocessing Research Center, Institute of Technical Education & Research, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar 751030, Odisha, India;
| | - Kihwan Song
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
| |
Collapse
|
3
|
Coêlho MRV, Rivas R, Ferreira-Neto JRC, Bezerra-Neto JP, Pandolfi V, Benko-Iseppon AM, Santos MG. Salt tolerance of Calotropis procera begins with immediate regulation of aquaporin activity in the root system. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:457-468. [PMID: 33854276 PMCID: PMC7981346 DOI: 10.1007/s12298-021-00957-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 05/07/2023]
Abstract
UNLABELLED The ability to respond quickly to salt stress can determine the tolerance level of a species. Here, we test how rapidly the roots of Calotropis procera react to high salinity conditions. In the first 24 h after saline exposure, the plants reduced stomatal conductance, increased CO2 assimilation, and water use efficiency. Thus, the root tissue showed an immediate increase in soluble sugars, free amino acid, and soluble protein contents. Twelve aquaporins showed differential gene expression in the roots of C. procera under salinity. Transcriptional upregulation was observed only after 2 h, with greater induction of CpTIP1.4 (fourfold). Transcriptional downregulation, in turn, occurred mainly after 8 h, with the largest associated with CpPIP1.2 (fourfold). C. procera plants responded quickly to high saline levels. Our results showed a strong stomatal control associated with high free amino acid and soluble sugar contents, regulated aquaporin expression in roots, and supported the high performance of the root system of C. procera under salinity. Moreover, this species was able to maintain a lower Na+/K+ ratio in the leaves compared to that of the roots of stressed plants. The first response of the root system, after immediate contact with saline solution, present an interesting scenario to discuss. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00957-9.
Collapse
Affiliation(s)
- Maria R. V. Coêlho
- Laboratório de Fisiologia Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE 50670-901 Brazil
| | - Rebeca Rivas
- Laboratório de Fisiologia Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE 50670-901 Brazil
| | - José R. C. Ferreira-Neto
- Laboratório de Genética E Biotecnologia Vegetal, Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE 50670-901 Brazil
| | - João P. Bezerra-Neto
- Laboratório de Genética E Biotecnologia Vegetal, Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE 50670-901 Brazil
| | - Valesca Pandolfi
- Laboratório de Genética E Biotecnologia Vegetal, Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE 50670-901 Brazil
| | - Ana Maria Benko-Iseppon
- Laboratório de Genética E Biotecnologia Vegetal, Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE 50670-901 Brazil
| | - Mauro G. Santos
- Laboratório de Fisiologia Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE 50670-901 Brazil
| |
Collapse
|
4
|
Guo A, Hao J, Su Y, Li B, Zhao N, Zhu M, Huang Y, Tian B, Shi G, Hua J. Two Aquaporin Genes, GhPIP2;7 and GhTIP2;1, Positively Regulate the Tolerance of Upland Cotton to Salt and Osmotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:780486. [PMID: 35222450 PMCID: PMC8873789 DOI: 10.3389/fpls.2021.780486] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/20/2021] [Indexed: 05/14/2023]
Abstract
Aquaporins (AQPs) facilitate the transport of water and small molecules across intrinsic membranes and play a critical role in abiotic stresses. In this study, 111, 54, and 56 candidate AQP genes were identified in Gossypium hirsutum (AD1), Gossypium arboreum (A2), and Gossypium raimondii (D5), respectively, and were further classified into five subfamilies, namely, plasma intrinsic protein (PIP), tonoplast intrinsic protein (TIP), nodulin 26-like intrinsic protein (NIP), small basic intrinsic protein (SIP), and uncategorized X intrinsic protein (XIP). Transcriptome analysis and quantitative real-time PCR (qRT-PCR) revealed some high-expression GhPIPs and GhTIPs (PIP and TIP genes in G. hirsutum, respectively) in drought and salt stresses. GhPIP2;7-silenced plants decreased in the chlorophyll content, superoxide dismutase (SOD) activity, and peroxidase (POD) activity comparing the mock control (empty-vector) under 400 mM NaCl treatment, which indicated a positive regulatory role of GhPIP2;7 in salt tolerance of cotton. The GhTIP2;1-silenced cotton plants were more sensitive to osmotic stress. GhTIP2;1-overexpressed plants exhibited less accumulation of H2O2 and malondialdehyde but higher proline content under osmotic stress. In summary, our study elucidates the positive regulatory roles of two GhAQPs (GhPIP2;7 and GhTIP2;1) in salt and osmotic stress responses, respectively, and provides a new gene resource for future research.
Collapse
Affiliation(s)
- Anhui Guo
- Laboratory of Cotton Genetics, Genomics and Breeding, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jianfeng Hao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying Su
- Laboratory of Cotton Genetics, Genomics and Breeding, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Bin Li
- Laboratory of Cotton Genetics, Genomics and Breeding, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Meng Zhu
- Laboratory of Cotton Genetics, Genomics and Breeding, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yi Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Baoming Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Gongyao Shi
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Gongyao Shi,
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- *Correspondence: Jinping Hua,
| |
Collapse
|
5
|
Skorupa M, Gołębiewski M, Kurnik K, Niedojadło J, Kęsy J, Klamkowski K, Wójcik K, Treder W, Tretyn A, Tyburski J. Salt stress vs. salt shock - the case of sugar beet and its halophytic ancestor. BMC PLANT BIOLOGY 2019; 19:57. [PMID: 30727960 PMCID: PMC6364445 DOI: 10.1186/s12870-019-1661-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/24/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Sugar beet is a highly salt-tolerant crop. However, its ability to withstand high salinity is reduced compared to sea beet, a wild ancestor of all beet crops. The aim of this study was to investigate transcriptional patterns associated with physiological, cytological and biochemical mechanisms involved in salt response in these closely related subspecies. Salt acclimation strategies were assessed in plants subjected to either gradually increasing salt levels (salt-stress) or in excised leaves, exposed instantly to salinity (salt-shock). RESULT The majority of DEGs was down-regulated under stress, which may lead to certain aspects of metabolism being reduced in this treatment, as exemplified by lowered transpiration and photosynthesis. This effect was more pronounced in sugar beet. Additionally, sugar beet, but not sea beet, growth was restricted. Silencing of genes encoding numerous transcription factors and signaling proteins was observed, concomitantly with the up-regulation of lipid transfer protein-encoding genes and those coding for NRTs. Bark storage protein genes were up-regulated in sugar beet to the level observed in unstressed sea beet. Osmotic adjustment, manifested by increased water and proline content, occurred in salt-shocked leaves of both genotypes, due to the concerted activation of genes encoding aquaporins, ion channels and osmoprotectants synthesizing enzymes. bHLH137 was the only TF-encoding gene induced by salt in a dose-dependent manner irrespective of the mode of salt treatment. Moreover, the incidence of bHLH-binding motives in promoter regions of salinity-regulated genes was significantly greater than in non-regulated ones. CONCLUSIONS Maintaining homeostasis under salt stress requires deeper transcriptomic changes in the sugar beet than in the sea beet. In both genotypes salt shock elicits greater transcriptomic changes than stress and it results in greater number of up-regulated genes compared to the latter. NRTs and bark storage protein may play a yet undefined role in salt stress-acclimation in beet. bHLH is a putative regulator of salt response in beet leaves and a promising candidate for further studies.
Collapse
Affiliation(s)
- Monika Skorupa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Marcin Gołębiewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Katarzyna Kurnik
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Janusz Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Jacek Kęsy
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | | | | | | | - Andrzej Tretyn
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Jarosław Tyburski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
6
|
Kong W, Yang S, Wang Y, Bendahmane M, Fu X. Genome-wide identification and characterization of aquaporin gene family in Beta vulgaris. PeerJ 2017; 5:e3747. [PMID: 28948097 PMCID: PMC5609522 DOI: 10.7717/peerj.3747] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/08/2017] [Indexed: 01/09/2023] Open
Abstract
Aquaporins (AQPs) are essential channel proteins that execute multi-functions throughout plant growth and development, including water transport, uncharged solutes uptake, stress response, and so on. Here, we report the first genome-wide identification and characterization AQP (BvAQP) genes in sugar beet (Beta vulgaris), an important crop widely cultivated for feed, for sugar production and for bioethanol production. Twenty-eight sugar beet AQPs (BvAQPs) were identified and assigned into five subfamilies based on phylogenetic analyses: seven of plasma membrane (PIPs), eight of tonoplast (TIPs), nine of NOD26-like (NIPs), three of small basic (SIPs), and one of x-intrinsic proteins (XIPs). BvAQP genes unevenly mapped on all chromosomes, except on chromosome 4. Gene structure and motifs analyses revealed that BvAQP have conserved exon-intron organization and that they exhibit conserved motifs within each subfamily. Prediction of BvAQPs functions, based on key protein domains conservation, showed a remarkable difference in substrate specificity among the five subfamilies. Analyses of BvAQPs expression, by mean of RNA-seq, in different plant organs and in response to various abiotic stresses revealed that they were ubiquitously expressed and that their expression was induced by heat and salt stresses. These results provide a reference base to address further the function of sugar beet aquaporins and to explore future applications for plants growth and development improvements as well as in response to environmental stresses.
Collapse
Affiliation(s)
- Weilong Kong
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, China
| | - Shaozong Yang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, China
| | - Yulu Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, China
| | - Mohammed Bendahmane
- INRA-CNRS-Lyon1-ENS, Laboratoire Reproduction et Developpement des Plantes, Ecole Normale Supérieure Lyon, France
| | - Xiaopeng Fu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, China
| |
Collapse
|
7
|
Skorupa M, Gołębiewski M, Domagalski K, Kurnik K, Abu Nahia K, Złoch M, Tretyn A, Tyburski J. Transcriptomic profiling of the salt stress response in excised leaves of the halophyte Beta vulgaris ssp. maritima. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 243:56-70. [PMID: 26795151 DOI: 10.1016/j.plantsci.2015.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/20/2015] [Accepted: 11/21/2015] [Indexed: 05/21/2023]
Abstract
Beta vulgaris ssp. maritima is a halophytic relative of cultivated beets. In the present work a transcriptome response to acute salt stress imposed to excised leaves of sea beet was investigated. Salt treatments consisted of adding NaCl directly to the transpiration stream by immersing the petioles of excised leaves into the salt solutions. Sequencing libraries were generated from leaves subjected to either moderate or strong salt stress. Control libraries were constructed from untreated leaves. Sequencing was performed using the Illumina MiSeq platform. We obtained 32970 unigenes by assembling the pooled reads from all the libraries with Trinity software. Screening the nr database returned 18,362 sequences with functional annotation. Using the reference transcriptome we identified 1,246 genes that were differentially expressed after 48 h of NaCl stress. Genes related to several cellular functions such as membrane transport, osmoprotection, molecular chaperoning, redox metabolism or protein synthesis were differentially expressed in response to salt stress. The response of sea beet leaves to salt treatments was marked out by transcriptomic up-regulation of genes related to photosynthetic carbon fixation, ribosome biogenesis, cell wall-building and cell wall expansion. Furthermore, several novel and undescribed transcripts were responsive to salinity in leaves of sea beet.
Collapse
Affiliation(s)
- Monika Skorupa
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Marcin Gołębiewski
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Krzysztof Domagalski
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Katarzyna Kurnik
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Karim Abu Nahia
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Michał Złoch
- Department of Microbiology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Andrzej Tretyn
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Jarosław Tyburski
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland.
| |
Collapse
|
8
|
Vitali V, Bellati J, Soto G, Ayub ND, Amodeo G. Root hydraulic conductivity and adjustments in stomatal conductance: hydraulic strategy in response to salt stress in a halotolerant species. AOB PLANTS 2015; 7:plv136. [PMID: 26602985 PMCID: PMC4683980 DOI: 10.1093/aobpla/plv136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 11/07/2015] [Indexed: 05/23/2023]
Abstract
Recent advances at the molecular level are introducing a new scenario that needs to be integrated into the analysis of plant hydraulic properties. Although it is not yet clear to what extent this scenario alters the current proposal for the hydraulic circuit models, it introduces new insights when studying plants that are able to easily overcome water restrictions. In this context, our aim was to explore water adjustments in a halotolerant model (Beta vulgaris) by studying the coordination between the root in terms of root hydraulic conductivity (Lpr) and the shoot as reflected in the stomatal conductance (gs). The root water pathways were also analysed in terms of root suberization (apoplastic barrier) and aquaporin transcript levels (cell-to-cell pathway). Beta vulgaris showed the ability to rapidly lose (4 h) and gain (24 h) turgor when submitted to salt stress (200 mM). The reduction profile observed in Lpr and gs was consistent with a coupled process. The tuning of the root water flow involved small variations in the studied aquaporin's transcripts before anatomical modifications occurred. Exploring Lpr enhancement after halting the stress contributed to show not only a different profile in restoring Lpr but also the capacity to uncouple Lpr from gs. Beta vulgaris root plays a key role and can anticipate water loss before the aerial water status is affected.
Collapse
Affiliation(s)
- Victoria Vitali
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, C1428EGA Buenos Aires, Argentina
| | - Jorge Bellati
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, C1428EGA Buenos Aires, Argentina
| | - Gabriela Soto
- Instituto de Genética "Ewald A. Favret", CICVyA, INTA-Castelar and Consejo Nacional de Investigaciones Científicas y Técnicas, 1686 Buenos Aires, Argentina
| | - Nicolás D Ayub
- Instituto de Genética "Ewald A. Favret", CICVyA, INTA-Castelar and Consejo Nacional de Investigaciones Científicas y Técnicas, 1686 Buenos Aires, Argentina
| | - Gabriela Amodeo
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, C1428EGA Buenos Aires, Argentina
| |
Collapse
|