1
|
Safdar M, Park S, Kim W, Kim D, Lee S, Kim YO, Kim J. Ultra-Tiny Scale Topographical Cues Direct Arabidopsis Root Growth and Development. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17476-17491. [PMID: 40045712 DOI: 10.1021/acsami.4c19726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Plant growth involves intricate processes, including cell division, expansion, and tissue organization, necessitating innovative technologies that emulate native cell-microenvironment interactions. Herein, we introduce ultra-tiny topographical cues (e.g., patterned micro/nanoscale substrates) that mimic micronanofiber structures found in the plant cell wall. We cultured Arabidopsis on unique cell wall-inspired ultra-tiny cues within specialized chambers that positively influenced various physiological aspects compared to a flat surface. Specifically, we observed bidirectional behavior, favoring maximum primary root growth and thickness on sparse features (e.g., 5 μm) and induced predominant anisotropic root alignment on dense features (e.g., 400-800 nm), with alignment decreasing monotonically as the feature size increased. Additionally, RNA sequencing revealed distinct molecular mechanisms underlying Arabidopsis root growth dynamics in response to these ultra-tiny cues, demonstrating modulation of specific genes involved in root development. Collectively, our findings highlight the potential of ultra-tiny cues to modulate gene expression and plant growth dynamics, offering innovative approaches to enhance agricultural productivity sustainably through feature-size-dependent interactions.
Collapse
Affiliation(s)
- Mahpara Safdar
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dream Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shinyull Lee
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yeon-Ok Kim
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
3
|
Meng LS, Cao XY, Liu MQ, Jiang JH. The antagonistic or synchronous relationship between ASL/LBD and KNOX homeobox members. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|