1
|
Hua Y, Yue Y, Zhao D, Ma Y, Xiong Y, Xiong X, Li J. Ablation of KDM2A Inhibits Preadipocyte Proliferation and Promotes Adipogenic Differentiation. Int J Mol Sci 2021; 22:9759. [PMID: 34575926 PMCID: PMC8467897 DOI: 10.3390/ijms22189759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Epigenetic signals and chromatin-modifying proteins play critical roles in adipogenesis, which determines the risk of obesity and which has recently attracted increasing interest. Histone demethylase 2A (KDM2A) is an important component of histone demethylase; however, its direct effect on fat deposition remains unclear. Here, a KDM2A loss of function was performed using two unbiased methods, small interfering RNA (siRNA) and Cre-Loxp recombinase systems, to reveal its function in adipogenesis. The results show that the knockdown of KDM2A by siRNAs inhibited the proliferation capacity of 3T3-L1 preadipocytes. Furthermore, the promotion of preadipocyte differentiation was observed in siRNA-treated cells, manifested by the increasing content of lipid droplets and the expression level of adipogenic-related genes. Consistently, the genetic deletion of KDM2A by Adipoq-Cre in primary adipocytes exhibited similar phenotypes to those of 3T3-L1 preadipocytes. Interestingly, the knockdown of KDM2A upregulates the expression level of Transportin 1(TNPO1), which in turn may induce the nuclear translocation of PPARγ and the accumulation of lipid droplets. In conclusion, the ablation of KDM2A inhibits preadipocyte proliferation and promotes its adipogenic differentiation. This work provides direct evidence of the exact role of KDM2A in fat deposition and provides theoretical support for obesity therapy that targets KDM2A.
Collapse
Affiliation(s)
- Yonglin Hua
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (Y.H.); (Y.Y.); (D.Z.); (Y.M.); (X.X.)
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yongqi Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (Y.H.); (Y.Y.); (D.Z.); (Y.M.); (X.X.)
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Dan Zhao
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (Y.H.); (Y.Y.); (D.Z.); (Y.M.); (X.X.)
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yan Ma
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (Y.H.); (Y.Y.); (D.Z.); (Y.M.); (X.X.)
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (Y.H.); (Y.Y.); (D.Z.); (Y.M.); (X.X.)
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (Y.H.); (Y.Y.); (D.Z.); (Y.M.); (X.X.)
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (Y.H.); (Y.Y.); (D.Z.); (Y.M.); (X.X.)
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
2
|
Ramzan F, Vickers MH, Mithen RF. Epigenetics, microRNA and Metabolic Syndrome: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22095047. [PMID: 34068765 PMCID: PMC8126218 DOI: 10.3390/ijms22095047] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetics refers to the DNA chemistry changes that result in the modification of gene transcription and translation independently of the underlying DNA coding sequence. Epigenetic modifications are reported to involve various molecular mechanisms, including classical epigenetic changes affecting DNA methylation and histone modifications and small RNA-mediated processes, particularly that of microRNAs. Epigenetic changes are reversible and are closely interconnected. They are recognised to play a critical role as mediators of gene regulation, and any alteration in these mechanisms has been identified to mediate various pathophysiological conditions. Moreover, genetic predisposition and environmental factors, including dietary alterations, lifestyle or metabolic status, are identified to interact with the human epigenome, highlighting the importance of epigenetic factors as underlying processes in the aetiology of various diseases such as MetS. This review will reflect on how both the classical and microRNA-regulated epigenetic changes are associated with the pathophysiology of metabolic syndrome. We will then focus on the various aspects of epigenetic-based strategies used to modify MetS outcomes, including epigenetic diet, epigenetic drugs, epigenome editing tools and miRNA-based therapies.
Collapse
|
3
|
Paternal Resistance Training Induced Modifications in the Left Ventricle Proteome Independent of Offspring Diet. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5603580. [PMID: 32454941 PMCID: PMC7218999 DOI: 10.1155/2020/5603580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/18/2019] [Indexed: 01/13/2023]
Abstract
Ancestral obesogenic exposure is able to trigger harmful effects in the offspring left ventricle (LV) which could lead to cardiovascular diseases. However, the impact of the father's lifestyle on the offspring LV is largely unexplored. The aim of this study was to investigate the effects of 8 weeks of paternal resistance training (RT) on the offspring left ventricle (LV) proteome exposed to control or high-fat (HF) diet. Wistar rats were randomly divided into two groups: sedentary fathers and trained fathers (8 weeks, 3 times per week with weights secured to the animals' tails). The offspring were obtained by mating with sedentary females. Upon weaning, male offspring were divided into 4 groups (5 animals per group): offspring from sedentary fathers, exposed to control diet (SFO-C); offspring from trained fathers, exposed to control diet (TFO-C); offspring from sedentary fathers, exposed to high-fat diet (SFO-HF); and offspring from trained fathers, exposed to high-fat diet (TFO-HF). The LC-MS/MS analysis revealed 537 regulated proteins among groups. Offspring exposure to HF diet caused reduction in the abundance levels of proteins related to cell component organization, metabolic processes, and transport. Proteins related to antioxidant activity, transport, and transcription regulation were increased in TFO-C and TFO-HF as compared with the SFO-C and SFO-HF groups. Paternal RT demonstrated to be an important intervention capable of inducing significant effects on the LV proteome regardless of offspring diet due to the increase of proteins involved into LV homeostasis maintenance. This study contributes to a better understanding of the molecular aspects involved in transgenerational inheritance.
Collapse
|
4
|
Lopes LL, Bressan J, Peluzio MDCG, Hermsdorff HHM. LINE-1 in Obesity and Cardiometabolic Diseases: A Systematic Review. J Am Coll Nutr 2019; 38:478-484. [PMID: 30862304 DOI: 10.1080/07315724.2018.1553116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epigenetic mechanisms may play an important role in the etiology of obesity and cardiometabolic diseases, by activating or silencing the related-genes. Scientific evidence has suggested that LINE-1 methylation is associated with body composition and obesity-related diseases, including insulin resistance, type 2 diabetes mellitus, and cardiovascular disease (CVD). It also has been evaluated as predictor of weight loss. The studies' results are still conflicting, and positive and negative associations have been found to LINE-1 methylation regarding adiposity and cardiometabolic markers. Overall, this review presents observational (cross-sectional and longitudinal) studies and interventions (diet, exercises, and bariatric surgery) that evaluated the relationship of the LINE-1 methylation with obesity, weight loss, dyslipidemias, hypertension, insulin resistance, CVD, and metabolic syndrome. TEACHING POINTS Epigenetic mechanisms may play an important role in the etiology of obesity and cardiometabolic diseases. Many studies have related methylation of LINE-1 with cardiometabolic diseases; however, the results are still controversial. The relationship between the etiology of chronic diseases and the methylation of LINE-1 is not fully elucidated. With advances in epigenetic studies, related mechanisms may be early biomarkers in weight change and cardiometabolic risk.
Collapse
Affiliation(s)
- Lílian L Lopes
- a Department of Nutrition and Health , Universidade Federal de Viçosa (UFV) , Viçosa , Minas Gerais , Brazil
| | - Josefina Bressan
- a Department of Nutrition and Health , Universidade Federal de Viçosa (UFV) , Viçosa , Minas Gerais , Brazil
| | - Maria do Carmo G Peluzio
- a Department of Nutrition and Health , Universidade Federal de Viçosa (UFV) , Viçosa , Minas Gerais , Brazil
| | - Helen Hermana M Hermsdorff
- a Department of Nutrition and Health , Universidade Federal de Viçosa (UFV) , Viçosa , Minas Gerais , Brazil
| |
Collapse
|
5
|
Guida MC, Birse RT, Dall'Agnese A, Toto PC, Diop SB, Mai A, Adams PD, Puri PL, Bodmer R. Intergenerational inheritance of high fat diet-induced cardiac lipotoxicity in Drosophila. Nat Commun 2019; 10:193. [PMID: 30643137 PMCID: PMC6331650 DOI: 10.1038/s41467-018-08128-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/17/2018] [Indexed: 12/26/2022] Open
Abstract
Obesity is strongly correlated with lipotoxic cardiomyopathy, heart failure and thus mortality. The incidence of obesity has reached alarming proportions worldwide, and increasing evidence suggests that the parents' nutritional status may predispose their offspring to lipotoxic cardiomyopathy. However, to date, mechanisms underlying intergenerational heart disease risks have yet to be elucidated. Here we report that cardiac dysfunction induced by high-fat-diet (HFD) persists for two subsequent generations in Drosophila and is associated with reduced expression of two key metabolic regulators, adipose triglyceride lipase (ATGL/bmm) and transcriptional cofactor PGC-1. We provide evidence that targeted expression of ATGL/bmm in the offspring of HFD-fed parents protects them, and the subsequent generation, from cardio-lipotoxicity. Furthermore, we find that intergenerational inheritance of lipotoxic cardiomyopathy correlates with elevated systemic H3K27 trimethylation. Lowering H3K27 trimethylation genetically or pharmacologically in the offspring of HFD-fed parents prevents cardiac pathology. This suggests that metabolic homeostasis is epigenetically regulated across generations.
Collapse
Affiliation(s)
- Maria Clara Guida
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ryan Tyge Birse
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA, 92037, USA
- Biocompatibles Inc., 300 Four Falls Corporate Center, 300 Conshohocken State Road, West Conshohocken, PA, 19428-2998, USA
| | - Alessandra Dall'Agnese
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA, 92037, USA
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA
| | - Paula Coutinho Toto
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Soda Balla Diop
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | - Peter D Adams
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA, 92037, USA
- IRCCS Fondazione Santa Lucia, 00142, Rome, Italy
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
6
|
Differential peripheral blood methylation by α-lipoic acid and EPA supplementation in overweight or obese women during a weight loss program. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
7
|
Rietjens IMCM, Louisse J, Beekmann K. The potential health effects of dietary phytoestrogens. Br J Pharmacol 2017; 174:1263-1280. [PMID: 27723080 PMCID: PMC5429336 DOI: 10.1111/bph.13622] [Citation(s) in RCA: 300] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/04/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022] Open
Abstract
Phytoestrogens are plant-derived dietary compounds with structural similarity to 17-β-oestradiol (E2), the primary female sex hormone. This structural similarity to E2 enables phytoestrogens to cause (anti)oestrogenic effects by binding to the oestrogen receptors. The aim of the present review is to present a state-of-the-art overview of the potential health effects of dietary phytoestrogens. Various beneficial health effects have been ascribed to phytoestrogens, such as a lowered risk of menopausal symptoms like hot flushes and osteoporosis, lowered risks of cardiovascular disease, obesity, metabolic syndrome and type 2 diabetes, brain function disorders, breast cancer, prostate cancer, bowel cancer and other cancers. In contrast to these beneficial health claims, the (anti)oestrogenic properties of phytoestrogens have also raised concerns since they might act as endocrine disruptors, indicating a potential to cause adverse health effects. The literature overview presented in this paper illustrates that several potential health benefits of phytoestrogens have been reported but that, given the data on potential adverse health effects, the current evidence on these beneficial health effects is not so obvious that they clearly outweigh the possible health risks. Furthermore, the data currently available are not sufficient to support a more refined (semi) quantitative risk-benefit analysis. This implies that a definite conclusion on possible beneficial health effects of phytoestrogens cannot be made. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
| | - Jochem Louisse
- Division of ToxicologyWageningen UniversityWageningenThe Netherlands
| | - Karsten Beekmann
- Division of ToxicologyWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
8
|
San-Cristobal R, Navas-Carretero S, Milagro FI, Riezu-Boj JI, Guruceaga E, Celis-Morales C, Livingstone KM, Brennan L, Lovegrove JA, Daniel H, Saris WH, Traczyk I, Manios Y, Gibney ER, Gibney MJ, Mathers JC, Martinez JA. Gene methylation parallelisms between peripheral blood cells and oral mucosa samples in relation to overweight. J Physiol Biochem 2017; 73:465-474. [DOI: 10.1007/s13105-017-0560-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/16/2017] [Indexed: 01/08/2023]
|
9
|
Xie XC, Cao YQ, Gao Q, Wang C, Li M, Wei SG. Acupuncture Improves Intestinal Absorption of Iron in Iron-deficient Obese Patients: A Randomized Controlled Preliminary Trial. Chin Med J (Engl) 2017; 130:508-515. [PMID: 28229980 PMCID: PMC5339922 DOI: 10.4103/0366-6999.200549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Obesity has an adverse effect on iron status. Hepcidin-mediated inhibition of iron absorption in the duodenum is a potential mechanism. Iron-deficient obese patients have diminished response to oral iron therapy. This study was designed to assess whether acupuncture could promote the efficacy of oral iron supplementation for the treatment of obesity-related iron deficiency (ID). Methods: Sixty ID or ID anemia (IDA) patients with obesity were screened at Beijing Hospital of Traditional Chinese Medicine and were randomly allocated to receive either oral iron replacement allied with acupuncture weight loss treatment (acupuncture group, n = 30) or oral iron combined with sham-acupuncture treatment (control group, n = 30). Anthropometric parameters were measured and blood samples were tested pre- and post-treatment. Differences in the treatment outcomes of ID/IDA were compared between the two groups. Results: After 8 weeks of acupuncture treatment, there was a significant decrease in body weight, body mass index, waist circumference, and waist/hip circumference ratio of patients in the acupuncture group, while no significant changes were observed in the control group. Oral iron supplementation brought more obvious improvements of iron status indicators including absolute increases in serum iron (11.08 ± 2.19 μmol/L vs. 4.43 ± 0.47 μmol/L), transferrin saturation (11.26 ± 1.65% vs. 1.01 ± 0.23%), and hemoglobin (31.47 ± 1.19 g/L vs. 21.00 ± 2.69 g/L) in the acupuncture group than control group (all P < 0.05). Meanwhile, serum leptin (2.26 ± 0.45 ng/ml vs. 8.13 ± 0.55 ng/ml, P < 0.05) and hepcidin (3.52 ± 1.23 ng/ml vs. 6.77 ± 0.84 ng/ml, P < 0.05) concentrations declined significantly in the acupuncture group than those in the control group. Conclusion: Acupuncture-based weight loss can enhance the therapeutic effects of iron replacement therapy for obesity-related ID/IDA through improving intestinal iron absorption, probably by downregulating the systemic leptin-hepcidin levels.
Collapse
Affiliation(s)
- Xin-Cai Xie
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Yan-Qiang Cao
- Department of Children's and Women's Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Qian Gao
- Department of Children's and Women's Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Chen Wang
- Department of Children's and Women's Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Man Li
- Department of Children's and Women's Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shou-Gang Wei
- Department of Children's and Women's Health, School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
10
|
Yu HR, Tain YL, Sheen JM, Tiao MM, Chen CC, Kuo HC, Hung PL, Hsieh KS, Huang LT. Prenatal Dexamethasone and Postnatal High-Fat Diet Decrease Interferon Gamma Production through an Age-Dependent Histone Modification in Male Sprague-Dawley Rats. Int J Mol Sci 2016; 17:ijms17101610. [PMID: 27669212 PMCID: PMC5085643 DOI: 10.3390/ijms17101610] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/11/2016] [Accepted: 09/14/2016] [Indexed: 02/07/2023] Open
Abstract
Overexposure to prenatal glucocorticoid (GC) disturbs hypothalamic-pituitary-adrenocortical axis-associated neuroendocrine metabolism and susceptibility to metabolic syndrome. A high-fat (HF) diet is a major environmental factor that can cause metabolic syndrome. We aimed to investigate whether prenatal GC plus a postnatal HF diet could alter immune programming in rat offspring. Pregnant Sprague-Dawley rats were given intraperitoneal injections of dexamethasone or saline at 14-21 days of gestation. Male offspring were then divided into four groups: vehicle, prenatal dexamethasone exposure, postnatal HF diet (VHF), and prenatal dexamethasone exposure plus a postnatal HF diet (DHF). The rats were sacrificed and adaptive immune function was evaluated. Compared to the vehicle, the DHF group had lower interferon gamma (IFN-γ) production by splenocytes at postnatal day 120. Decreases in H3K9 acetylation and H3K36me3 levels at the IFN-γ promoter correlated with decreased IFN-γ production. The impaired IFN-γ production and aberrant site-specific histone modification at the IFN-γ promoter by prenatal dexamethasone treatment plus a postnatal HF diet resulted in resilience at postnatal day 180. Prenatal dexamethasone and a postnatal HF diet decreased IFN-γ production through a site-specific and an age-dependent histone modification. These findings suggest a mechanism by which prenatal exposure to GC and a postnatal environment exert effects on fetal immunity programming.
Collapse
Affiliation(s)
- Hong-Ren Yu
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - You-Lin Tain
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Mao-Meng Tiao
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Chih-Cheng Chen
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Ho-Chang Kuo
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Pi-Lien Hung
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Kai-Sheng Hsieh
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Li-Tung Huang
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
11
|
Abstract
The increasing incidence of obesity is a serious global public health challenge. Although the obesity epidemic is largely fueled by poor nutrition and lack of exercise, certain chemicals have been shown to potentially have a role in its aetiology. A substantial body of evidence suggests that a subclass of endocrine-disrupting chemicals (EDCs), which interfere with endocrine signalling, can disrupt hormonally regulated metabolic processes, especially if exposure occurs during early development. These chemicals, so-called 'obesogens' might predispose some individuals to gain weight despite their efforts to limit caloric intake and increase levels of physical activity. This Review discusses the role of EDCs in the obesity epidemic, the latest research on the obesogen concept, epidemiological and experimental findings on obesogens, and their modes of action. The research reviewed here provides knowledge that health scientists can use to inform their research and decision-making processes.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Division of Extramural Research and Training, Population Health Branch, National Institute of Environmental Sciences, PO Box 12233, Research Triangle Park, NC 27709, USA
| | - Retha Newbold
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences/National Institutes of Health, PO Box 12233, Research Triangle Park, NC 27709, USA
| | - Thaddeus T Schug
- Division of Extramural Research and Training, Population Health Branch, National Institute of Environmental Sciences, PO Box 12233, Research Triangle Park, NC 27709, USA
| |
Collapse
|
12
|
Strandvik B. Perinatal programming by diets with essential fatty acid deficient/high saturated fatty acids or different n‐6/n‐3 ratios for diseases in adulthood. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Birgitta Strandvik
- Department of Biosciences and NutritionKarolinska InstitutetStockholmSweden
| |
Collapse
|