1
|
Aranda RG, Fatima S, Rafid MI, McGill I, Hadwiger JA. Regulatory differences between atypical and typical MAP kinases in Dictyostelium discoideum. Cell Signal 2025; 130:111701. [PMID: 40020888 PMCID: PMC11908898 DOI: 10.1016/j.cellsig.2025.111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
Within the large family of mitogen activated protein kinases (MAPKs), one outlier group referred to as atypical MAPKs is not regulated by conventional upstream MAPK kinases (MAP2Ks). This includes the Dictyostelium discoideum atypical MAPK Erk2, a protein kinase essential for chemotactic movement and development. The regulation and functional specificity of Erk2 was investigated through phenotypic analysis of chimeric and mutant MAPKs. Chimeric MAPKs containing regions of Erk2 were created using complementary regions of the more typical MAPK Erk1, that provides very different functions in this amoeba. The chimeric MAPKs were not phosphorylated at levels observed for wild-type MAPKs and none rescued wild-type MAPK function to erk1- or erk2- cells. Endogenous Erk1 and Erk2 MAPKs were destabilized in cells expressing chimeric MAPKs containing the same carboxyl terminus. A carboxyl terminal motif conserved among atypical MAPKs was important but not essential for Erk2 regulation and function and the motif did not confer atypical MAPK regulation when present in Erk1. A kinase-dead version of Erk2 was phosphorylated in response to folate or cAMP chemotactic stimulation, suggesting Erk2 is activated in vivo by an upstream protein kinase, contrary to previous predictions of autophosphorylation. This regulation implies a protein kinase distinct from the single conventional MAP2K in Dictyostelium regulates atypical MAPK signaling. A non-activatable form of Erk2 was not capable of rescuing Erk2 function in erk2- cells. These findings suggest that the regulation of atypical and typical MAPKs is substantially different and carried out by distinct upstream protein kinases.
Collapse
Affiliation(s)
- Ramee G Aranda
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America
| | - Saher Fatima
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America
| | - Md Ikram Rafid
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America
| | - Imani McGill
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America
| | - Jeffrey A Hadwiger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America.
| |
Collapse
|
2
|
Jaiswal P, Meena NP, Chang FS, Liao XH, Kim L, Kimmel AR. An integrated, cross-regulation pathway model involving activating/adaptive and feed-forward/feed-back loops for directed oscillatory cAMP signal-relay/response during the development of Dictyostelium. Front Cell Dev Biol 2024; 11:1263316. [PMID: 38357530 PMCID: PMC10865387 DOI: 10.3389/fcell.2023.1263316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/19/2023] [Indexed: 02/16/2024] Open
Abstract
Self-organized and excitable signaling activities play important roles in a wide range of cellular functions in eukaryotic and prokaryotic cells. Cells require signaling networks to communicate amongst themselves, but also for response to environmental cues. Such signals involve complex spatial and temporal loops that may propagate as oscillations or waves. When Dictyostelium become starved for nutrients, cells within a localized space begin to secrete cAMP. Starved cells also become chemotactic to cAMP. cAMP signals propagate as outwardly moving waves that oscillate at ∼6 min intervals, which creates a focused territorial region for centralized cell aggregation. Proximal cells move inwardly toward the cAMP source and relay cAMP outwardly to recruit additional cells. To ensure directed inward movement and outward cAMP relay, cells go through adapted and de-adapted states for both cAMP synthesis/degradation and for directional cell movement. Although many immediate components that regulate cAMP signaling (including receptors, G proteins, an adenylyl cyclase, phosphodiesterases, and protein kinases) are known, others are only inferred. Here, using biochemical experiments coupled with gene inactivation studies, we model an integrated large, multi-component kinetic pathway involving activation, inactivation (adaptation), re-activation (re-sensitization), feed-forward, and feed-back controls to generate developmental cAMP oscillations.
Collapse
Affiliation(s)
- Pundrik Jaiswal
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, United States
| | - Netra Pal Meena
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, United States
| | - Fu-Sheng Chang
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, United States
| | - Xin-Hua Liao
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, United States
| | - Lou Kim
- Department of Biological Sciences, Florida International University, Miami, FL, United States
| | - Alan R. Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
3
|
Hadwiger JA, Aranda RG, Fatima S. Atypical MAP kinases - new insights and directions from amoeba. J Cell Sci 2023; 136:jcs261447. [PMID: 37850857 PMCID: PMC10617611 DOI: 10.1242/jcs.261447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) have been the focus of many studies over the past several decades, but the understanding of one subgroup of MAPKs, orthologs of MAPK15, known as atypical MAPKs, has lagged behind others. In most organisms, specific activating signals or downstream responses of atypical MAPK signaling pathways have not yet been identified even though these MAPKs are associated with many eukaryotic processes, including cancer and embryonic development. In this Review, we discuss recent studies that are shedding new light on both the regulation and function of atypical MAPKs in different organisms. In particular, the analysis of the atypical MAPK in the amoeba Dictyostelium discoideum has revealed important roles in chemotactic responses and gene regulation. The rapid and transient phosphorylation of the atypical MAPK in these responses suggest a highly regulated activation mechanism in vivo despite the ability of atypical MAPKs to autophosphorylate in vitro. Atypical MAPK function can also impact the activation of other MAPKs in amoeba. These advances are providing new perspectives on possible MAPK roles in animals that have not been previously considered, and this might lead to the identification of potential targets for regulating cell movement in the treatment of diseases.
Collapse
Affiliation(s)
- Jeffrey A. Hadwiger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| | - Ramee G. Aranda
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| | - Saher Fatima
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| |
Collapse
|
4
|
Alsaffar N, Fang Y, Walters E. Thymoquinone effect on the Dictyostelium discoideum model correlates with functional roles for glutathione S-transferases in eukaryotic proliferation, chemotaxis, and development. PLoS One 2023; 18:e0282399. [PMID: 36857392 PMCID: PMC9977050 DOI: 10.1371/journal.pone.0282399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
An increasing body of literature demonstrates the therapeutic relevance of polyphenols in eukaryotic cell and animal model studies. The phase II glutathione S-transferases (GST) show differential responses to thymoquinone, a major bioactive polyphenol constituent of the black seed, Nigella sativa. Beyond antioxidant defense, GSTs may act in non-enzymatic capacities to effect cell cycle, motility, and differentiation. Here, we report the impact of thymoquinone on the life cycle of the eukaryotic model Dictyostelium discoideum and accompanying profiles of its GST-alpha (DdGSTA) enzyme activity and isozyme expression. In silico molecular modeling revealed strong interaction(s) between thymoquinone and DdGSTA2 and DdGSTA3 isozymes that correlated with in vivo, dose-dependent inhibition of cell proliferation of amoebae at 24, 48, and 72hr. Similarly, cytosolic DdGST enzyme activity (CDNB activity) was also responsive to different thymoquinone concentrations. Thymoquinone generally reduced expression of DdGSTA2 and DdGSTA3 isozymes in proliferating cells, however differential expression of the isozymes occurred during starvation. Thymoquinone effectively reduced early-stage aggregation of starved amoeba, accompanied by increased reactive oxygen species and altered expression of tubulin and contact site A (gp80), which resulted in reduced morphogenesis and fruiting body formation. These observations reveal that thymoquinone can impact signaling mechanisms that regulate proliferation and development in D. discoideum.
Collapse
Affiliation(s)
- Nida Alsaffar
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, Washington, DC, United States of America
| | - Yayin Fang
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, Washington, DC, United States of America
| | - Eric Walters
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
5
|
Hadwiger JA, Cai H, Aranda RG, Fatima S. An atypical MAPK regulates translocation of a GATA transcription factor in response to chemoattractant stimulation. J Cell Sci 2022; 135:jcs260148. [PMID: 35916164 PMCID: PMC9481928 DOI: 10.1242/jcs.260148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
The Dictyostelium atypical mitogen-activated protein kinase (MAPK) Erk2 is required for chemotactic responses to cAMP as amoeba undergo multicellular development. In this study, Erk2 was found to be essential for the cAMP-stimulated translocation of the GATA transcription factor GtaC as indicated by the distribution of a GFP-GtaC reporter. Erk2 was also found to be essential for the translocation of GtaC in response to external folate, a foraging signal that directs the chemotaxis of amoeba to bacteria. Erk1, the only other Dictyostelium MAPK, was not required for the GtaC translocation to either chemoattractant, indicating that GFP-GtaC is a kinase translocation reporter specific for atypical MAPKs. The translocation of GFP-GtaC in response to folate was absent in mutants lacking the folate receptor Far1 or the coupled G-protein subunit Gα4. Loss of GtaC function resulted in enhanced chemotactic movement to folate, suggesting that GtaC suppresses responses to folate. The alteration of four Erk2-preferred phosphorylation sites in GtaC impacted the translocation of GFP-GtaC in response to folate and the GFP-GtaC-mediated rescue of aggregation and development of gtaC- cells. The ability of different chemoattractants to stimulate Erk2-regulated GtaC translocation suggests that atypical MAPK-mediated regulation of transcription factors can contribute to different cell fates.
Collapse
Affiliation(s)
- Jeffrey A. Hadwiger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Ramee G. Aranda
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| | - Saher Fatima
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| |
Collapse
|
6
|
Adhikari N, McGill IN, Hadwiger JA. MAPK docking motif in the Dictyostelium Gα2 subunit is required for aggregation and transcription factor translocation. Cell Signal 2021; 87:110117. [PMID: 34418534 DOI: 10.1016/j.cellsig.2021.110117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 01/05/2023]
Abstract
Some G protein alpha subunits contain a mitogen-activated protein kinase (MAPK) docking motif (D-motif) near the amino terminus that can impact cellular responses to external signals. The Dictyostelium Gα2 G protein subunit is required for chemotaxis to cAMP during the onset of multicellular development and this subunit contains a putative D-motif near the amino terminus. The Gα2 subunit D-motif was altered to examine its potential role in chemotaxis and multicellular development. In gα2- cells the expression of the D-motif mutant (Gα2D-) or wild-type subunit from high copy number vectors rescued cell aggregation but blocked the transition of mounds into slugs. This phenotype was also observed in parental strains with a wild-type gα2 locus indicating that the heterologous Gα2 subunit expression interferes with multicellular morphogenesis. Expression of the Gα2D- subunit from a low copy number vectors in gα2- cells did not rescue aggregation whereas the wild-type Gα2 subunit rescued aggregation efficiently and allowed wild-type morphological development. The Gα2D- and Gα2 subunit were both capable of restoring comparable levels of cAMP stimulated motility and the ability to co-aggregate with wild-type cells implying that the aggregation defect of Gα2D- expressing cells is due to insufficient intercellular signaling. Expression of the Gα2 subunit but not the Gα2D- subunit fully restored the ability of cAMP to stimulate the translocation of the GtaC transcription factor suggesting the D-motif is important for transcription factor regulation. These results suggest that the D-motif of Gα2 plays a role in aggregation and other developmental responses involved with cAMP signaling.
Collapse
Affiliation(s)
- Nirakar Adhikari
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America
| | - Imani N McGill
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America
| | - Jeffrey A Hadwiger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America.
| |
Collapse
|
7
|
Xu X, Pan M, Jin T. How Phagocytes Acquired the Capability of Hunting and Removing Pathogens From a Human Body: Lessons Learned From Chemotaxis and Phagocytosis of Dictyostelium discoideum (Review). Front Cell Dev Biol 2021; 9:724940. [PMID: 34490271 PMCID: PMC8417749 DOI: 10.3389/fcell.2021.724940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/15/2021] [Indexed: 12/01/2022] Open
Abstract
How phagocytes find invading microorganisms and eliminate pathogenic ones from human bodies is a fundamental question in the study of infectious diseases. About 2.5 billion years ago, eukaryotic unicellular organisms-protozoans-appeared and started to interact with various bacteria. Less than 1 billion years ago, multicellular animals-metazoans-appeared and acquired the ability to distinguish self from non-self and to remove harmful organisms from their bodies. Since then, animals have developed innate immunity in which specialized white-blood cells phagocytes- patrol the body to kill pathogenic bacteria. The social amoebae Dictyostelium discoideum are prototypical phagocytes that chase various bacteria via chemotaxis and consume them as food via phagocytosis. Studies of this genetically amendable organism have revealed evolutionarily conserved mechanisms underlying chemotaxis and phagocytosis and shed light on studies of phagocytes in mammals. In this review, we briefly summarize important studies that contribute to our current understanding of how phagocytes effectively find and kill pathogens via chemotaxis and phagocytosis.
Collapse
Affiliation(s)
| | | | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, United States
| |
Collapse
|
8
|
Garige M, Walters E. Characterization of glutathione S-transferase enzymes in Dictyostelium discoideum suggests a functional role for the GSTA2 isozyme in cell proliferation and development. PLoS One 2021; 16:e0250704. [PMID: 33909675 PMCID: PMC8081208 DOI: 10.1371/journal.pone.0250704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 04/13/2021] [Indexed: 11/19/2022] Open
Abstract
In this report, we extend our previous characterization of Dictyostelium discoideum glutathione S-transferase (DdGST) enzymes that are expressed in the eukaryotic model organism. Transcript profiling of gstA1-gstA5 (alpha class) genes in vegetative, log phase cells identified gstA2 and gstA3 with highest expression (6-7.5-fold, respectively) when compared to other gstA transcripts. Marked reductions in all gstA transcripts occurred under starvation conditions, with gstA2 and gstA3 exhibiting the largest decreases (-96% and -86.6%, respectively). When compared to their pre-starvation levels, there was also a 60 percent reduction in total GST activity. Glutathione (GSH) pull-down assay and mass spectroscopy detected three isozymes (DdGSTA1, DdGSTA2 and DdGSTA3) that were predominantly expressed in vegetative cells. Biochemical and kinetic comparisons between rDdGSTA2 and rDdGSTA3 shows higher activity of rDdGSTA2 to the CDNB (1-chloro-2,4-dinitrobenzene) substrate. RNAi-mediated knockdown of endogenous DdGSTA2 caused a 60 percent reduction in proliferation, delayed development, and altered morphogenesis of fruiting bodies, whereas overexpression of rDdGSTA2 enzyme had no effect. These findings corroborate previous studies that implicate a role for phase II GST enzymes in cell proliferation, homeostasis, and development in eukaryotic cells.
Collapse
Affiliation(s)
- Mamatha Garige
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, Washington, DC, United States of America
| | - Eric Walters
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, Washington, DC, United States of America
| |
Collapse
|
9
|
Ribeiro GM, Porfírio-Sousa AL, Maurer-Alcalá XX, Katz LA, Lahr DJG. De novo Sequencing, Assembly, and Annotation of the Transcriptome for the Free-Living Testate Amoeba Arcella intermedia. J Eukaryot Microbiol 2020; 67:383-392. [PMID: 31971327 DOI: 10.1111/jeu.12788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/19/2019] [Accepted: 12/22/2019] [Indexed: 11/29/2022]
Abstract
Arcella, a diverse understudied genus of testate amoebae is a member of Tubulinea in Amoebozoa group. Transcriptomes are a powerful tool for characterization of these organisms as they are an efficient way of characterizing the protein-coding potential of the genome. In this work, we employed both single-cell and clonal populations transcriptomics to create a reference transcriptome for Arcella. We compared our results with annotations of Dictyostelium discoideum, a model Amoebozoan. We assembled a pool of 38 Arcella intermedia transcriptomes, which after filtering are composed of a total of 14,712 translated proteins. There are GO categories enriched in Arcella including mainly intracellular signal transduction pathways; we also used KEGG to annotate 11,546 contigs, which also have similar distribution to Dictyostelium. A large portion of data is still impossible to assign to a gene family, probably due to a combination of lineage-specific genes, incomplete sequences in the transcriptome and rapidly evolved genes. Some absences in pathways could also be related to low expression of these genes. We provide a reference database for Arcella, and we highlight the emergence of the need for further gene discovery in Arcella.
Collapse
Affiliation(s)
- Giulia M Ribeiro
- Department of Zoology, Institute of Biosciences, University of São Paulo, Matao Street, Travessa 14 Cidade Universitaria, São Paulo, 05508-090, São Paulo, Brazil
| | - Alfredo L Porfírio-Sousa
- Department of Zoology, Institute of Biosciences, University of São Paulo, Matao Street, Travessa 14 Cidade Universitaria, São Paulo, 05508-090, São Paulo, Brazil
| | - Xyrus X Maurer-Alcalá
- Department of Biological Sciences, Smith College, 10 Elm Street, Northampton, Massachusetts, 01063.,Program in Organismic and Evolutionary Biology, University of Massachussetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01002-9316
| | - Laura A Katz
- Department of Biological Sciences, Smith College, 10 Elm Street, Northampton, Massachusetts, 01063
| | - Daniel J G Lahr
- Department of Zoology, Institute of Biosciences, University of São Paulo, Matao Street, Travessa 14 Cidade Universitaria, São Paulo, 05508-090, São Paulo, Brazil
| |
Collapse
|
10
|
Rijal R, Consalvo KM, Lindsey CK, Gomer RH. An endogenous chemorepellent directs cell movement by inhibiting pseudopods at one side of cells. Mol Biol Cell 2018; 30:242-255. [PMID: 30462573 PMCID: PMC6589559 DOI: 10.1091/mbc.e18-09-0562] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic chemoattraction signal transduction pathways, such as those used by Dictyostelium discoideum to move toward cAMP, use a G protein-coupled receptor to activate multiple conserved pathways such as PI3 kinase/Akt/PKB to induce actin polymerization and pseudopod formation at the front of a cell, and PTEN to localize myosin II to the rear of a cell. Relatively little is known about chemorepulsion. We previously found that AprA is a chemorepellent protein secreted by Dictyostelium cells. Here we used 29 cell lines with disruptions of cAMP and/or AprA signal transduction pathway components, and delineated the AprA chemorepulsion pathway. We find that AprA uses a subset of chemoattraction signal transduction pathways including Ras, protein kinase A, target of rapamycin (TOR), phospholipase A, and ERK1, but does not require the PI3 kinase/Akt/PKB and guanylyl cyclase pathways to induce chemorepulsion. Possibly as a result of not using the PI3 kinase/Akt/PKB pathway and guanylyl cyclases, AprA does not induce actin polymerization or increase the pseudopod formation rate, but rather appears to inhibit pseudopod formation at the side of cells closest to the source of AprA.
Collapse
Affiliation(s)
- Ramesh Rijal
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Kristen M Consalvo
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | | | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| |
Collapse
|
11
|
Dictyostelium Erk2 is an atypical MAPK required for chemotaxis. Cell Signal 2018; 46:154-165. [PMID: 29551366 DOI: 10.1016/j.cellsig.2018.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/22/2022]
Abstract
The Dictyostelium genome encodes only two MAPKs, Erk1 and Erk2, and both are expressed during growth and development. Reduced levels of Erk2 expression have been shown previously to restrict cAMP production during development but still allow for chemotactic movement. In this study the erk2 gene was disrupted to eliminate Erk2 function. The absence of Erk2 resulted in a complete loss of folate and cAMP chemotaxis suggesting that this MAPK plays an integral role in the signaling mechanisms involved with this cellular response. However, folate stimulation of early chemotactic responses, such as Ras and PI3K activation and rapid actin filament formation, were not affected by the loss of Erk2 function. The erk2- cells had a severe defect in growth on bacterial lawns but assays of bacterial cell engulfment displayed only subtle changes in the rate of bacterial engulfment. Only cells with no MAPK function, erk1-erk2- double mutants, displayed a severe proliferation defect in axenic medium. Loss of Erk2 impaired the phosphorylation of Erk1 in secondary responses to folate stimulation indicating that Erk2 has a role in the regulation of Erk1 activation during chemotaxis. Loss of the only known Dictyostelium MAPK kinase, MekA, prevented the phosphorylation of Erk1 but not Erk2 in response to folate and cAMP confirming that Erk2 is not regulated by a conventional MAP2K. This lack of MAP2K phosphorylation of Erk2 and the sequence similarity of Erk2 to mammalian MAPK15 (Erk8) suggest that the Dictyostelium Erk2 belongs to a group of atypical MAPKs. MAPK activation has been observed in chemotactic responses in a wide range of organisms but this study demonstrates an essential role for MAPK function in chemotactic movement. This study also confirms that MAPKs provide critical contributions to cell proliferation.
Collapse
|
12
|
Fu C, Li N, Yuan Y, Wang R, Chen J, Yang J, Guo Z, Wang S, Zhang Y, Liu Y, Dong J. Chronic intermittent hypobaric hypoxia provides vascular protection in the aorta of the 2-kidney, 1-clip rat model of hypertension. Can J Physiol Pharmacol 2018; 96:807-814. [PMID: 29400080 DOI: 10.1139/cjpp-2017-0356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many studies have demonstrated that chronic intermittent hypobaric hypoxia (CIHH) can reduce blood pressure in spontaneously hypertensive rats and renovascular hypertensive (RVH) rats in which endothelial dysfunction is determined as a critical factor. However, whether CIHH can regulate vasodilation of the aorta in RVH rats remains unknown. The purpose of this study was to investigate the effect of CIHH on impaired relaxation of the aorta in the 2-kidney, 1-clip (2K1C) RVH rat model. The results showed CIHH improved the impaired endothelium-dependent relaxation in the 2K1C rat aorta. The endothelial dysfunction was prevented by the p38 antagonist SB203580, but not by the ERK1/2 antagonist PD98059 or JNK antagonist SP600125. Furthermore, the expression of p-eNOS, HIF-1α, and HIF-2α increased while that of p-p38 and BMP-4 decreased in CIHH-treated aortas from 2K1C rats. Finally, the p-eNOS expression was upregulated and the p-p38 expression was downregulated by pre-incubation of SB203580 or the BMP-4 antagonist Noggin with the aorta. CIHH ameliorated the impairment of endothelium-dependent relaxation through upregulating the expression of p-eNOS, which may be mediated by the inhibition of BMP-4/p-p38 MAPK, and upregulating the expression of HIFs in the 2K1C rat aorta.
Collapse
Affiliation(s)
- Congrui Fu
- a Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Na Li
- b Department of Physiology, Medical College, Hebei University, Baoding, Hebei, China
| | - Yujia Yuan
- a Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ri Wang
- a Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinting Chen
- a Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jing Yang
- a Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zan Guo
- a Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sheng Wang
- a Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China.,c Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Yi Zhang
- a Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China.,c Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Yixian Liu
- a Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China.,c Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Jinghui Dong
- a Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
13
|
Suess PM, Watson J, Chen W, Gomer RH. Extracellular polyphosphate signals through Ras and Akt to prime Dictyostelium discoideum cells for development. J Cell Sci 2017; 130:2394-2404. [PMID: 28584190 DOI: 10.1242/jcs.203372] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/27/2017] [Indexed: 12/21/2022] Open
Abstract
Linear chains of five to hundreds of phosphates called polyphosphate are found in organisms ranging from bacteria to humans, but their function is poorly understood. In Dictyostelium discoideum, polyphosphate is used as a secreted signal that inhibits cytokinesis in an autocrine negative feedback loop. To elucidate how cells respond to this unusual signal, we undertook a proteomic analysis of cells treated with physiological levels of polyphosphate and observed that polyphosphate causes cells to decrease levels of actin cytoskeleton proteins, possibly explaining how polyphosphate inhibits cytokinesis. Polyphosphate also causes proteasome protein levels to decrease, and in both Dictyostelium and human leukemia cells, decreases proteasome activity and cell proliferation. Polyphosphate also induces Dictyostelium cells to begin development by increasing expression of the cell-cell adhesion molecule CsA (also known as CsaA) and causing aggregation, and this effect, as well as the inhibition of proteasome activity, is mediated by Ras and Akt proteins. Surprisingly, Ras and Akt do not affect the ability of polyphosphate to inhibit proliferation, suggesting that a branching pathway mediates the effects of polyphosphate, with one branch affecting proliferation, and the other branch affecting development.
Collapse
Affiliation(s)
- Patrick M Suess
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Jacob Watson
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Wensheng Chen
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA.,Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei 230032, China
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| |
Collapse
|
14
|
Singh S, Chaturvedi A, Mani A. Cross-Family Comparative Proteomic Study and Molecular Phylogeny of MAP Kinases in Plants. Interdiscip Sci 2015; 7:357-63. [PMID: 26362572 DOI: 10.1007/s12539-015-0265-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 09/07/2014] [Accepted: 09/26/2014] [Indexed: 11/29/2022]
Abstract
Mitogen-activated protein kinases are serine/threonine-specific protein kinases and they are closely related to cyclin-dependent kinases. They constitute functionally significant family of proteins that is involved in various cellular functions like response to mitogens, osmotic stress, heat shock and proinflammatory cytokines as well as known to play key role in proliferation, gene expression, differentiation, mitosis, cell survival, and apoptosis. MAP kinases are characteristically found in eukaryotes only, though they are fairly diverse and encountered in all animals, fungi and plants, and even in an array of unicellular eukaryotes. In this study 24 MAP kinase sequences from various plant species were selected in order to compare their conserved regions, amino acid composition, evolutionary orders and other statistical parameters.
Collapse
Affiliation(s)
- Swati Singh
- Center of Bioinformatics, University of Allahabad, Allahabad, 211002, India.
| | - Anoop Chaturvedi
- Department of Statistics, University of Allahabad, Allahabad, 211002, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, India
| |
Collapse
|
15
|
Singh S, Chaturvedi A, Mani A. Cross family comparative proteomic study and molecular phylogeny of MAP kinases in plants. Interdiscip Sci 2015. [PMID: 25595585 DOI: 10.1007/s12539-014-0214-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 09/07/2014] [Accepted: 09/26/2014] [Indexed: 11/27/2022]
Abstract
Mitogen-activated protein kinases are serine/threonine-specific protein kinases and they are closely related to cyclin-dependent kinases. They constitute functionally significant family of proteins that is involved in various cellular functions like response to mitogens, osmotic stress, heat shock and proinflammatory cytokines as well as known to play key role in proliferation, gene expression, differentiation, mitosis, cell survival, and apoptosis. MAP kinases are characteristically found in eukaryotes only, though they are fairly diverse and encountered in all animals, fungi and plants, and even in an array of unicellular eukaryotes. In this study 24 MAP kinase sequences from various plant species were selected in order to compare their conserved regions, amino acid composition, evolutionary orders and other statistical parameters.
Collapse
Affiliation(s)
- Swati Singh
- Center of Bioinformatics, University of Allahabad, Allahabad, India, 211002,
| | | | | |
Collapse
|
16
|
Schwebs DJ, Hadwiger JA. The Dictyostelium MAPK ERK1 is phosphorylated in a secondary response to early developmental signaling. Cell Signal 2014; 27:147-55. [PMID: 25451080 DOI: 10.1016/j.cellsig.2014.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 12/20/2022]
Abstract
Previous reports have suggested that the two mitogen-activated protein kinases (MAPKs) in Dictyostelium discoideum, ERK1 and ERK2, can be directly activated in response to external cAMP even though these MAPKs play different roles in the developmental life cycle. To better characterize MAPK regulation, the levels of phosphorylated MAPKs were analyzed in response to external signals. Only ERK2 was rapidly phosphorylated in response to the chemoattractants, cAMP and folate. In contrast, the phosphorylation of ERK1 occurred as a secondary or indirect response to these stimuli and this phosphorylation was enhanced by cell-cell interactions, suggesting that other external signals can activate ERK1. The phosphorylation of ERK1 or ERK2 did not require the function of the other MAPK in these responses. Folate stimulation of a chimeric population of erk1- and gα4- cells revealed that the phosphorylation of ERK1 could be mediated through an intercellular signal other than folate. Loss of ERK1 function suppressed the developmental delay and the deficiency in anterior cell localization associated with gα5- mutants suggesting that ERK1 function can be down regulated through Gα5 subunit-mediated signaling. However, no major changes in the phosphorylation of ERK1 were observed in gα5- cells suggesting that the Gα5 subunit signaling pathway does not regulate the phosphorylation of ERK1. These findings suggest that the activation of ERK1 occurs as a secondary response to chemoattractants and that other cell-cell signaling mechanisms contribute to this activation. Gα5 subunit signaling can down regulate ERK1 function to promote prestalk cell development but not through major changes to the level of phosphorylated ERK1.
Collapse
Affiliation(s)
- David J Schwebs
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| | - Jeffrey A Hadwiger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA.
| |
Collapse
|
17
|
Wu J, Pan Z, Cheng M, Shen Y, Yu H, Wang Q, Lou Y. Ginsenoside Rg1 facilitates neural differentiation of mouse embryonic stem cells via GR-dependent signaling pathway. Neurochem Int 2012; 62:92-102. [PMID: 23063465 DOI: 10.1016/j.neuint.2012.09.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 09/07/2012] [Accepted: 09/30/2012] [Indexed: 12/29/2022]
Abstract
Ginsenoside Rg1, a steroidal saponin of high abundance in ginseng, possesses the neuroprotective effects. In this study, we tried to explore the effect of Rg1 on promoting differentiation of mouse embryonic stem (ES) cells towards the neuronal lineage and its potential role involved in glucocorticoid receptor (GR) activation. Rg1 treatment induced a remarkable increase in the population of neuron-like cells in a time-dependent manner. More than 80% of Rg1-treated embryoid bodies (EBs) differentiated into neuron-like cells on d 8+10. Furthermore, the gradually increased protein expression of neurofilament (NEFM) and β-tubulin III (a neuronal specific protein) was determined. GR expression gradually increased during the differentiation course. RU486, an antagonist of GR, could efficiently block the neurogenesis-promoting activity of Rg1. On the other side, Rg1 stimulated the phosphorylation of ERK1/2 and Akt at different time points through GR activation-dependent mechanisms. Treatment of both U0126 (an inhibitor of MEK) and LY294002 (an inhibitor of PI3 K), hampered the neuronal differentiation induced by Rg1. Meantime, U0126 further decreased Rg1-induced p-Akt expression. In conclusion, Rg1 possesses the effects on inducing differentiation of mouse ES cells into neurons in vitro via the GR-MEK-ERK1/2-PI3 K-Akt signaling pathway.
Collapse
Affiliation(s)
- Jiaying Wu
- Division of Cardio-Cerebral Vascular and Hepatic Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|