1
|
Abdeeva IA, Panina YS, Maloshenok LG. Synthetic Biology Approaches to Posttranslational Regulation in Plants. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S278-S289. [PMID: 38621756 DOI: 10.1134/s0006297924140165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 04/17/2024]
Abstract
To date synthetic biology approaches involving creation of functional genetic modules are used in a wide range of organisms. In plants, such approaches are used both for research in the field of functional genomics and to increase the yield of agricultural crops. Of particular interest are methods that allow controlling genetic apparatus of the plants at post-translational level, which allow reducing non-targeted effects from interference with the plant genome. This review discusses recent advances in the plant synthetic biology for regulation of the plant metabolism at posttranslational level and highlights their future directions.
Collapse
Affiliation(s)
- Inna A Abdeeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Yulia S Panina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Liliya G Maloshenok
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia.
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
2
|
Ventroux M, Noirot-Gros MF. Prophage-encoded small protein YqaH counteracts the activities of the replication initiator DnaA in Bacillus subtilis. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748575 DOI: 10.1099/mic.0.001268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Bacterial genomes harbour cryptic prophages that are mostly transcriptionally silent with many unannotated genes. Still, cryptic prophages may contribute to their host fitness and phenotypes. In Bacillus subtilis, the yqaF-yqaN operon belongs to the prophage element skin, and is tightly repressed by the Xre-like repressor SknR. This operon contains several small ORFs (smORFs) potentially encoding small-sized proteins. The smORF-encoded peptide YqaH was previously reported to bind to the replication initiator DnaA. Here, using a yeast two-hybrid assay, we found that YqaH binds to the DNA binding domain IV of DnaA and interacts with Spo0A, a master regulator of sporulation. We isolated single amino acid substitutions in YqaH that abolished the interaction with DnaA but not with Spo0A. Then, using a plasmid-based inducible system to overexpress yqaH WT and mutant derivatives, we studied in B. subtilis the phenotypes associated with the specific loss-of-interaction with DnaA (DnaA_LOI). We found that expression of yqaH carrying DnaA_LOI mutations abolished the deleterious effects of yqaH WT expression on chromosome segregation, replication initiation and DnaA-regulated transcription. When YqaH was induced after vegetative growth, DnaA_LOI mutations abolished the drastic effects of YqaH WT on sporulation and biofilm formation. Thus, YqaH inhibits replication, sporulation and biofilm formation mainly by antagonizing DnaA in a manner that is independent of the cell cycle checkpoint Sda.
Collapse
Affiliation(s)
- Magali Ventroux
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
3
|
Guerra-Almeida D, Tschoeke DA, da-Fonseca RN. Understanding small ORF diversity through a comprehensive transcription feature classification. DNA Res 2021; 28:6317669. [PMID: 34240112 PMCID: PMC8435553 DOI: 10.1093/dnares/dsab007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Small open reading frames (small ORFs/sORFs/smORFs) are potentially coding sequences smaller than 100 codons that have historically been considered junk DNA by gene prediction software and in annotation screening; however, the advent of next-generation sequencing has contributed to the deeper investigation of junk DNA regions and their transcription products, resulting in the emergence of smORFs as a new focus of interest in systems biology. Several smORF peptides were recently reported in noncanonical mRNAs as new players in numerous biological contexts; however, their relevance is still overlooked in coding potential analysis. Hence, this review proposes a smORF classification based on transcriptional features, discussing the most promising approaches to investigate smORFs based on their different characteristics. First, smORFs were divided into nonexpressed (intergenic) and expressed (genic) smORFs. Second, genic smORFs were classified as smORFs located in noncoding RNAs (ncRNAs) or canonical mRNAs. Finally, smORFs in ncRNAs were further subdivided into sequences located in small or long RNAs, whereas smORFs located in canonical mRNAs were subdivided into several specific classes depending on their localization along the gene. We hope that this review provides new insights into large-scale annotations and reinforces the role of smORFs as essential components of a hidden coding DNA world.
Collapse
Affiliation(s)
- Diego Guerra-Almeida
- Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo Antonio Tschoeke
- Alberto Luiz Coimbra Institute of Graduate Studies and Engineering Research (COPPE), Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Nunes- da-Fonseca
- Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology in Molecular Entomology, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Bhati KK, Blaakmeer A, Paredes EB, Dolde U, Eguen T, Hong SY, Rodrigues V, Straub D, Sun B, Wenkel S. Approaches to identify and characterize microProteins and their potential uses in biotechnology. Cell Mol Life Sci 2018; 75:2529-2536. [PMID: 29670998 PMCID: PMC6003976 DOI: 10.1007/s00018-018-2818-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/05/2018] [Accepted: 04/13/2018] [Indexed: 01/29/2023]
Abstract
MicroProteins are small proteins that contain a single protein domain and are related to larger, often multi-domain proteins. At the molecular level, microProteins act by interfering with the formation of higher order protein complexes. In the past years, several microProteins have been identified in plants and animals that strongly influence biological processes. Due to their ability to act as dominant regulators in a targeted manner, microProteins have a high potential for biotechnological use. In this review, we present different ways in which microProteins are generated and we elaborate on techniques used to identify and characterize them. Finally, we give an outlook on possible applications in biotechnology.
Collapse
Affiliation(s)
- Kaushal Kumar Bhati
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Anko Blaakmeer
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Esther Botterweg Paredes
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Ulla Dolde
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Tenai Eguen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Shin-Young Hong
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Vandasue Rodrigues
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Daniel Straub
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Bin Sun
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Stephan Wenkel
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
5
|
Srinivasan A, Jiménez-Gómez JM, Fornara F, Soppe WJJ, Brambilla V. Alternative splicing enhances transcriptome complexity in desiccating seeds. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:947-958. [PMID: 27121908 DOI: 10.1111/jipb.12482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/20/2016] [Indexed: 05/22/2023]
Abstract
Before being dispersed in the environment, mature seeds need to be dehydrated. The survival of seeds after dispersal depends on their low hydration in combination with high desiccation tolerance. These characteristics are established during seed maturation. Some key seed maturation genes have been reported to be regulated by alternative splicing (AS). However, so far AS was described only for single genes and a comprehensive analysis of AS during seed maturation has been lacking. We investigated gene expression and AS during Arabidopsis thaliana seed development at a global level, before and after desiccation. Bioinformatics tools were developed to identify differentially spliced regions within genes. Our data suggest the importance and shows the peculiar features of AS during seed desiccation. We identified AS in 34% of genes that are expressed at both timepoints before and after desiccation. Most of these AS transcript variants had not been found before in other tissues. Among the AS genes some seed master regulators could be found. Interestingly, 6% of all expressed transcripts were not transcriptionally regulated during desiccation, but only modified by AS. We propose that AS should be more routinely taken into account in the analysis of transcriptomic data to prevent overlooking potentially important regulators.
Collapse
Affiliation(s)
- Arunkumar Srinivasan
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Open Analytics, Antwerp, Belgium
| | - José M Jiménez-Gómez
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Versailles, France
| | - Fabio Fornara
- University of Milan, Department of Biosciences, Milano 20133, Italy
| | - Wim J J Soppe
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Vittoria Brambilla
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- University of Milan, Department of Biosciences, Milano 20133, Italy
- University of Milan, Department of Agricultural and Environmental Sciences, via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
6
|
Graeff M, Straub D, Eguen T, Dolde U, Rodrigues V, Brandt R, Wenkel S. MicroProtein-Mediated Recruitment of CONSTANS into a TOPLESS Trimeric Complex Represses Flowering in Arabidopsis. PLoS Genet 2016; 12:e1005959. [PMID: 27015278 PMCID: PMC4807768 DOI: 10.1371/journal.pgen.1005959] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 03/04/2016] [Indexed: 11/19/2022] Open
Abstract
MicroProteins are short, single domain proteins that act by sequestering larger, multi-domain proteins into non-functional complexes. MicroProteins have been identified in plants and animals, where they are mostly involved in the regulation of developmental processes. Here we show that two Arabidopsis thaliana microProteins, miP1a and miP1b, physically interact with CONSTANS (CO) a potent regulator of flowering time. The miP1a/b-type microProteins evolved in dicotyledonous plants and have an additional carboxy-terminal PF(V/L)FL motif. This motif enables miP1a/b microProteins to interact with TOPLESS/TOPLESS-RELATED (TPL/TPR) proteins. Interaction of CO with miP1a/b/TPL causes late flowering due to a failure in the induction of FLOWERING LOCUS T (FT) expression under inductive long day conditions. Both miP1a and miP1b are expressed in vascular tissue, where CO and FT are active. Genetically, miP1a/b act upstream of CO thus our findings unravel a novel layer of flowering time regulation via microProtein-inhibition.
Collapse
Affiliation(s)
- Moritz Graeff
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
- Copenhagen Plant Science Centre, University of Copenhagen, Copenhagen, Denmark
- Department for Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Straub
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
- Copenhagen Plant Science Centre, University of Copenhagen, Copenhagen, Denmark
- Department for Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tenai Eguen
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
- Copenhagen Plant Science Centre, University of Copenhagen, Copenhagen, Denmark
- Department for Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Dolde
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
- Copenhagen Plant Science Centre, University of Copenhagen, Copenhagen, Denmark
- Department for Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vandasue Rodrigues
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
- Copenhagen Plant Science Centre, University of Copenhagen, Copenhagen, Denmark
- Department for Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ronny Brandt
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Stephan Wenkel
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
- Copenhagen Plant Science Centre, University of Copenhagen, Copenhagen, Denmark
- Department for Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
7
|
Eguen T, Straub D, Graeff M, Wenkel S. MicroProteins: small size-big impact. TRENDS IN PLANT SCIENCE 2015; 20:477-82. [PMID: 26115780 DOI: 10.1016/j.tplants.2015.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/13/2015] [Accepted: 05/23/2015] [Indexed: 05/04/2023]
Abstract
MicroProteins (miPs) are short, usually single-domain proteins that, in analogy to miRNAs, heterodimerize with their targets and exert a dominant-negative effect. Recent bioinformatic attempts to identify miPs have resulted in a list of potential miPs, many of which lack the defining characteristics of a miP. In this opinion article, we clearly state the characteristics of a miP as evidenced by known proteins that fit the definition; we explain why modulatory proteins misrepresented as miPs do not qualify as true miPs. We also discuss the evolutionary history of miPs, and how the miP concept can extend beyond transcription factors (TFs) to encompass different non-TF proteins that require dimerization for full function.
Collapse
Affiliation(s)
- Tenai Eguen
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
| | - Daniel Straub
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
| | - Moritz Graeff
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
| | - Stephan Wenkel
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark.
| |
Collapse
|