1
|
Römer P, Blatt S, Siegberg F, Vinayahalingam S, Al-Nawas B, Kämmerer PW, Thiem DGE. Intraoral perfusion assessment using endoscopic hyperspectral imaging (EHSI)- first description of a novel approach. Clin Oral Investig 2025; 29:115. [PMID: 39907805 PMCID: PMC11799009 DOI: 10.1007/s00784-025-06197-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/26/2025] [Indexed: 02/06/2025]
Abstract
OBJECTIVES This study aimed to establish a method to detect and quantify mucosal malperfusion intraorally using state-of-the-art Endoscopic Hyperspectral Imaging (EHSI). For this purpose, mucosal ischemia was selectively induced by intraligamentary anesthesia (ILA) with and without + epinephrine using a standardized protocol. MATERIALS AND METHODS EHSI was performed using a novel endoscopic hyperspectral imaging system. Parameters assessed were Tissue Oxygen Saturation (StO2 [%]), Tissue Hemoglobin Index (THI), Near Infrared Perfusion Index (NPI) and Tissue Water Index (TWI). Fifty-seven healthy subjects received ILA using Articaine 4% with (ILA+) and without (ILA-) epinephrine at a dosage of 1:200,000 administered mesially and distally to the target tooth 42 (Universal No. 26). Mucosal perfusion was assessed using EHSI for 45 min post-injection. RESULTS After ILA+, a distinct ischemia of the mucosa was already clinically apparent after 30 s with significant reduction of THI and StO2 by an average of 57% (p < 0.001) and 7% (p < 0.040) compared to baseline values. Persistent hypoperfusion of the oral mucosa was observed throughout the monitoring period, exhibiting a gradual resolution at the 30-minute mark, and nearing baseline perfusion approximately 45 min post-injection. There was no papillary necrosis after ILA + injection. CONCLUSION EHSI is suitable to adequately detect and visualize actual perfusion of the intraoral mucosa. The study revealed that LA with epinephrine (1:200,000) induce temporary hypoxia in the dental papilla but without causing severe ischemia. CLINICAL RELEVANCE EHSI will enable promising applications in the future, i.a. success monitoring of periodontal therapies, intraoral free flap monitoring and the assessment of cancer margins.
Collapse
Affiliation(s)
- Paul Römer
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Centre Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Sebastian Blatt
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Centre Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Fabia Siegberg
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Centre Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Shankeeth Vinayahalingam
- Department of Oral and Maxillofacial Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Centre Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - P W Kämmerer
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Centre Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Daniel G E Thiem
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Centre Mainz, Augustusplatz 2, 55131, Mainz, Germany.
| |
Collapse
|
2
|
Wrigge R, Sucher R, Haak F, Meyer HJ, Unruh J, Hau HM, Mehdorn M, Tautenhahn HM, Seehofer D, Scheuermann U. Hyperspectral imaging in living and deceased donor kidney transplantation. BMC Med Imaging 2025; 25:34. [PMID: 39891083 PMCID: PMC11786449 DOI: 10.1186/s12880-025-01576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/28/2025] [Indexed: 02/03/2025] Open
Abstract
OBJECTIVE AND BACKGROUND Hyperspectral imaging (HSI) is an innovative, noninvasive technique that assesses tissue and organ perfusion and oxygenation. This study aimed to evaluate HSI as a predictive tool for early postoperative graft function and long-term outcomes in living donor (LD) and deceased donor (DD) kidney transplantation (KT). PATIENTS AND METHODS HSI of kidney allograft parenchyma from 19 LD and 51 DD kidneys was obtained intraoperatively 15 minutes after reperfusion. Using the dedicated HSI TIVITA Tissue System, indices of tissue oxygenation (StO2), perfusion (near-infrared [NIR]), organ hemoglobin (OHI), and tissue water (TWI) were calculated and then analyzed retrospectively. RESULTS LD kidneys had superior intraoperative HSI values of StO2 (0.78 ± 0.13 versus 0.63 ± 0.24; P = 0.001) and NIR (0.67 ± 0.10 versus 0.56 ± 0.27; P = 0.016) compared to DD kidneys. Delayed graft function (DGF) was observed in 18 cases (26%), in which intraoperative HSI showed significantly lower values of StO2 (0.78 ± 0.07 versus 0.35 ± 0.21; P < 0.001) and NIR (0.67 ± 0.11 versus 0.34 ± 0.32; P < 0.001). Receiver operating characteristic curve analysis demonstrated an excellent predictive value of HSI for the development of DGF, with an area under the curve of 0.967 for StO2 and 0.801 for NIR. Kidney grafts with low StO2 values (cut-off point 0.6) showed reduced renal function with a low glomerular filtration rate and elevated urea levels in the first two weeks after KT. Three years after KT, graft survival was also inferior in the group with initially low StO2 values. CONCLUSION HSI is a useful tool for predicting DGF in living and deceased KT and may assist in estimating short-term allograft function. However, further studies with expanded cohorts are needed to evaluate the association between HSI and long-term graft outcomes.
Collapse
Affiliation(s)
- Rasmus Wrigge
- Department of Visceral, Transplantation, Vascular and Thoracic Surgery, University Hospital of Leipzig, Liebigstrasse 20, Leipzig, 04103, Germany
| | - Robert Sucher
- Department of Visceral, Transplantation, Vascular and Thoracic Surgery, University Hospital of Leipzig, Liebigstrasse 20, Leipzig, 04103, Germany
- Department of General-, Visceral- and Transplant Surgery, Medical University of Graz, Graz, Austria
| | - Fabian Haak
- Department of Visceral, Transplantation, Vascular and Thoracic Surgery, University Hospital of Leipzig, Liebigstrasse 20, Leipzig, 04103, Germany
| | - Hans-Jonas Meyer
- Department of Diagnostic and Interventional Radiology, University Hospital of Leipzig, Leipzig, Germany
| | - Julia Unruh
- Department of Visceral, Transplantation, Vascular and Thoracic Surgery, University Hospital of Leipzig, Liebigstrasse 20, Leipzig, 04103, Germany
| | - Hans-Michael Hau
- Department of Visceral, Transplantation, Vascular and Thoracic Surgery, University Hospital of Leipzig, Liebigstrasse 20, Leipzig, 04103, Germany
- Department of General-, Visceral- and Transplant Surgery, Medical University of Graz, Graz, Austria
| | - Matthias Mehdorn
- Department of Visceral, Transplantation, Vascular and Thoracic Surgery, University Hospital of Leipzig, Liebigstrasse 20, Leipzig, 04103, Germany
| | - Hans-Michael Tautenhahn
- Department of Visceral, Transplantation, Vascular and Thoracic Surgery, University Hospital of Leipzig, Liebigstrasse 20, Leipzig, 04103, Germany
| | - Daniel Seehofer
- Department of Visceral, Transplantation, Vascular and Thoracic Surgery, University Hospital of Leipzig, Liebigstrasse 20, Leipzig, 04103, Germany
| | - Uwe Scheuermann
- Department of Visceral, Transplantation, Vascular and Thoracic Surgery, University Hospital of Leipzig, Liebigstrasse 20, Leipzig, 04103, Germany.
| |
Collapse
|
3
|
Nickel F, Studier-Fischer A, Özdemir B, Odenthal J, Müller LR, Knoedler S, Kowalewski KF, Camplisson I, Allers MM, Dietrich M, Schmidt K, Salg GA, Kenngott HG, Billeter AT, Gockel I, Sagiv C, Hadar OE, Gildenblat J, Ayala L, Seidlitz S, Maier-Hein L, Müller-Stich BP. Optimization of anastomotic technique and gastric conduit perfusion with hyperspectral imaging and machine learning in an experimental model for minimally invasive esophagectomy. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2025; 51:106908. [PMID: 37105869 DOI: 10.1016/j.ejso.2023.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/26/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
INTRODUCTION Esophagectomy is the mainstay of esophageal cancer treatment, but anastomotic insufficiency related morbidity and mortality remain challenging for patient outcome. Therefore, the objective of this work was to optimize anastomotic technique and gastric conduit perfusion with hyperspectral imaging (HSI) for total minimally invasive esophagectomy (MIE) with linear stapled anastomosis. MATERIAL AND METHODS A live porcine model (n = 58) for MIE was used with gastric conduit formation and simulation of linear stapled side-to-side esophagogastrostomy. Four main experimental groups differed in stapling length (3 vs. 6 cm) and simulation of anastomotic position on the conduit (cranial vs. caudal). Tissue oxygenation around the anastomotic simulation site was evaluated using HSI and was validated with histopathology. RESULTS The tissue oxygenation (ΔStO2) after the anastomotic simulation remained constant only for the short stapler in caudal position (-0.4 ± 4.4%, n.s.) while it was impaired markedly in the other groups (short-cranial: -15.6 ± 11.5%, p = 0.0002; long-cranial: -20.4 ± 7.6%, p = 0.0126; long-caudal: -16.1 ± 9.4%, p < 0.0001). Tissue samples from avascular stomach as measured by HSI showed correspondent eosinophilic pre-necrotic changes in 35.7 ± 9.7% of the surface area. CONCLUSION Tissue oxygenation at the site of anastomotic simulation of the gastric conduit during MIE is influenced by stapling technique. Optimal oxygenation was achieved with a short stapler (3 cm) and sufficient distance of the simulated anastomosis to the cranial end of the gastric conduit. HSI tissue deoxygenation corresponded to histopathologic necrotic tissue changes. The experimental model with HSI and ML allow for systematic optimization of gastric conduit perfusion and anastomotic technique while clinical translation will have to be proven.
Collapse
Affiliation(s)
- F Nickel
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany; HIDSS4Health - Helmholtz Information and Data Science School for Health, Heidelberg and Karlsruhe, Germany
| | - A Studier-Fischer
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany; School of Medicine, Heidelberg University, Heidelberg, Germany
| | - B Özdemir
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - J Odenthal
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - L R Müller
- HIDSS4Health - Helmholtz Information and Data Science School for Health, Heidelberg and Karlsruhe, Germany; Division of Computer Assisted Medical Interventions, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
| | - S Knoedler
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - K F Kowalewski
- Department of Urology, Medical Faculty of Mannheim at the University of Heidelberg, Mannheim, Germany
| | - I Camplisson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - M M Allers
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - M Dietrich
- Department of Anaesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - K Schmidt
- Department of Anaesthesiology and Intensive Care Medicine, Essen University Hospital, Essen, Germany
| | - G A Salg
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - H G Kenngott
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - A T Billeter
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - I Gockel
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Leipzig University Hospital, Leipzig, Germany
| | - C Sagiv
- DeePathology Ltd., Ra'anana, Israel
| | | | | | - L Ayala
- HIDSS4Health - Helmholtz Information and Data Science School for Health, Heidelberg and Karlsruhe, Germany; Division of Computer Assisted Medical Interventions, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - S Seidlitz
- HIDSS4Health - Helmholtz Information and Data Science School for Health, Heidelberg and Karlsruhe, Germany; Division of Computer Assisted Medical Interventions, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - L Maier-Hein
- HIDSS4Health - Helmholtz Information and Data Science School for Health, Heidelberg and Karlsruhe, Germany; Division of Computer Assisted Medical Interventions, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - B P Müller-Stich
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany; HIDSS4Health - Helmholtz Information and Data Science School for Health, Heidelberg and Karlsruhe, Germany.
| |
Collapse
|
4
|
Wise PA, Studier-Fischer A, Hackert T, Nickel F. [Status Quo of Surgical Navigation]. Zentralbl Chir 2024; 149:522-528. [PMID: 38056501 DOI: 10.1055/a-2211-4898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Surgical navigation, also referred to as computer-assisted or image-guided surgery, is a technique that employs a variety of methods - such as 3D imaging, tracking systems, specialised software, and robotics to support surgeons during surgical interventions. These emerging technologies aim not only to enhance the accuracy and precision of surgical procedures, but also to enable less invasive approaches, with the objective of reducing complications and improving operative outcomes for patients. By harnessing the integration of emerging digital technologies, surgical navigation holds the promise of assisting complex procedures across various medical disciplines. In recent years, the field of surgical navigation has witnessed significant advances. Abdominal surgical navigation, particularly endoscopy, laparoscopic, and robot-assisted surgery, is currently undergoing a phase of rapid evolution. Emphases include image-guided navigation, instrument tracking, and the potential integration of augmented and mixed reality (AR, MR). This article will comprehensively delve into the latest developments in surgical navigation, spanning state-of-the-art intraoperative technologies like hyperspectral and fluorescent imaging, to the integration of preoperative radiological imaging within the intraoperative setting.
Collapse
Affiliation(s)
- Philipp Anthony Wise
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - Alexander Studier-Fischer
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - Thilo Hackert
- Klinik für Allgemein-, Viszeral- und Thoraxchirurgie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Felix Nickel
- Klinik für Allgemein-, Viszeral- und Thoraxchirurgie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| |
Collapse
|
5
|
Wach J, Weber F, Vychopen M, Arlt F, Pfahl A, Köhler H, Melzer A, Güresir E. Surgical Hyperspectral imaging and Indocyanine green Near-infrared Examination (SHINE) for brain arteriovenous malformation resection: a case report on how to visualize perfusion. Front Surg 2024; 11:1477920. [PMID: 39493269 PMCID: PMC11527785 DOI: 10.3389/fsurg.2024.1477920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Background and importance Arteriovenous malformations (AVMs) are complex vascular anomalies that pose significant risks, including intracranial hemorrhage and neurological deficits. Surgical resection is the preferred treatment, requiring precise intraoperative imaging to ensure complete removal while preserving critical structures. This case report presents the first combined use of hyperspectral imaging (HSI) and indocyanine green video angiography (ICG VA) to visualize perfusion during brain AVM surgery, highlighting the potential benefits of these advanced imaging techniques. Case description A 66-year-old male presented with chronic headaches but no neurological deficits. MRI revealed a superficial AVM in the left frontal lobe within the superior frontal sulcus, measuring approximately 2.4 cm. The AVM was fed by feeders from the pericallosal artery, callosomarginal artery, and middle cerebral artery (MCA) branches, with drainage through a dilated cortical vein into the superior sagittal sinus. Preoperative embolization of two MCA feeding branches was performed, followed by microsurgical resection with ICG VA and HSI. Conclusions This case report demonstrates the successful application of HSI and ICG VA in brain AVM surgery. The combined use of these technologies provided comprehensive intraoperative assessment, enhancing surgical precision and safety. The integration of HSI offers non-invasive, contrast-agent-free imaging, potentially improving outcomes by enabling detailed perfusion mapping. Future studies should explore the broader applications of these imaging modalities in neurovascular practice.
Collapse
Affiliation(s)
- Johannes Wach
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | - Ferdinand Weber
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | - Martin Vychopen
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | - Felix Arlt
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | - Annekatrin Pfahl
- Innovation Center Computer Assisted Surgery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Hannes Köhler
- Innovation Center Computer Assisted Surgery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Andreas Melzer
- Innovation Center Computer Assisted Surgery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
6
|
Vogt F, Wagner T, Katou S, Kneifel F, Vogel T, Morgül H, Houben P, Wahl P, Pascher A, Radunz S. Hyperspectral imaging of human liver allografts for prediction of initial graft function. Langenbecks Arch Surg 2024; 409:306. [PMID: 39400566 PMCID: PMC11473603 DOI: 10.1007/s00423-024-03497-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE Ischemia reperfusion injury represents a significant yet difficult to assess risk factor for short- and long-term graft impairment in human liver transplantation (LT). As a non-invasive, non-ionizing tool, hyperspectral imaging (HSI) is capable of correlating optical properties with organ microperfusion. Hence, we here performed a study of human liver allografts assessed by HSI for microperfusion and prediction of initial graft function. METHODS Images of liver parenchyma of 37 human liver allografts were acquired at bench preparation, during normothermic machine perfusion (NMP), if applicable, and after reperfusion in the recipient. A specialized HSI acquisition software computed oxygen saturation (StO2), tissue hemoglobin indices (THI), near infrared perfusion indices (NIR), and tissue water indices (TWI). HSI parameters were analyzed for differences with regard to preservation technique, reperfusion sequence and presence of early allograft dysfunction (EAD). RESULTS Organ preservation was performed by means of NMP (n = 31) or static cold storage (SCS; n = 6). Patients' demographics, donor characteristics, presence of EAD (NMP 36.7% vs. SCS 50%, p = 0.6582), and HSI parameters were comparable between both groups of preservation method. In organs developing EAD, NIR at 1, 2, and 4 h NMP and after reperfusion in the recipient was significantly lower (1 h NMP: 18.6 [8.6-27.6] vs. 28.3 [22.5-39.4], p = 0.0468; 2 h NMP: 19.4 [8.7-30.4] vs. 37.1 [27.5-44.6], p = 0.0011; 4 h NMP: 26.0 [6.8-37.1] vs. 40.3 [32.3-49.9], p = 0.0080; reperfusion: 13.0 [11.5-34.3] vs. 30.6 [19.3-44.0], p = 0.0212). CONCLUSION HSI assessment of human liver allografts is feasible during organ preservation and in the recipient. NIR during NMP and after reperfusion might predict the onset of EAD. Larger trials are warranted for assessment of this novel technique in human LT.
Collapse
Affiliation(s)
- Franziska Vogt
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Tristan Wagner
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Shadi Katou
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Felicia Kneifel
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Thomas Vogel
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Haluk Morgül
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Philipp Houben
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Philip Wahl
- Diaspective Vision GmbH, Strandstraße 15, 18233, Am Salzhaff, Germany
| | - Andreas Pascher
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Sonia Radunz
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany.
- Department of General, Visceral and Transplant Surgery, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| |
Collapse
|
7
|
Studier-Fischer A, Özdemir B, Rees M, Ayala L, Seidlitz S, Sellner J, Kowalewski KF, Haney CM, Odenthal J, Knödler S, Dietrich M, Gruneberg D, Brenner T, Schmidt K, Schmitt FCF, Weigand MA, Salg GA, Dupree A, Nienhüser H, Mehrabi A, Hackert T, Müller BP, Maier-Hein L, Nickel F. Crystalloid volume versus catecholamines for management of hemorrhagic shock during esophagectomy: assessment of microcirculatory tissue oxygenation of the gastric conduit in a porcine model using hyperspectral imaging - an experimental study. Int J Surg 2024; 110:6558-6572. [PMID: 38976902 PMCID: PMC11486957 DOI: 10.1097/js9.0000000000001849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/08/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION Oncologic esophagectomy is a two-cavity procedure with considerable morbidity and mortality. Complex anatomy and the proximity to major vessels constitute a risk for massive intraoperative hemorrhage. Currently, there is no conclusive consensus on the ideal anesthesiologic countermeasure in case of such immense blood loss. The objective of this work was to identify the most promising anesthesiologic management in case of intraoperative hemorrhage with regards to tissue perfusion of the gastric conduit during esophagectomy using hyperspectral imaging. MATERIAL AND METHODS An established live porcine model ( n =32) for esophagectomy was used with gastric conduit formation and simulation of a linear stapled side-to-side esophagogastrostomy. After a standardized procedure of controlled blood loss of about 1 l per pig, the four experimental groups ( n =8 each) differed in anesthesiologic intervention, that is, (I) permissive hypotension, (II) catecholamine therapy using noradrenaline, (III) crystalloid volume supplementation, and (IV) combined crystalloid volume supplementation with noradrenaline therapy. Hyperspectral imaging tissue oxygenation (StO 2 ) of the gastric conduit was evaluated and correlated with systemic perfusion parameters. Measurements were conducted before (T0) and after (T1) laparotomy, after hemorrhage (T2), and 60 min (T3) and 120 min (T4) after anesthesiologic intervention. RESULTS StO 2 values of the gastric conduit showed significantly different results between the four experimental groups, with 63.3% (±7.6%) after permissive hypotension (I), 45.9% (±6.4%) after catecholamine therapy (II), 70.5% (±6.1%) after crystalloid volume supplementation (III), and 69.0% (±3.7%) after combined therapy (IV). StO 2 values correlated strongly with systemic lactate values (r=-0.67; CI -0.77 to -0.54), which is an established prognostic factor. CONCLUSION Crystalloid volume supplementation (III) yields the highest StO 2 values and lowest systemic lactate values and therefore appears to be the superior primary treatment strategy after hemorrhage during esophagectomy with regards to microcirculatory tissue oxygenation of the gastric conduit.
Collapse
Affiliation(s)
- Alexander Studier-Fischer
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital
- German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Systems and Robotics in Urology (ISRU)
- Department of Urology and Urosurgery, University Medical Center Mannheim, Medical Faculty of the University of Heidelberg
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim
| | - Berkin Özdemir
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital
- German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Systems and Robotics in Urology (ISRU)
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim
| | - Maike Rees
- German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Medical Systems
- Faculty of Mathematics and Computer Science, Heidelberg University
| | - Leonardo Ayala
- German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Medical Systems
| | - Silvia Seidlitz
- German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Medical Systems
- Faculty of Mathematics and Computer Science, Heidelberg University
- HIDSS4Health – Helmholtz Information and Data Science School for Health, Karlsruhe, Heidelberg
| | - Jan Sellner
- German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Medical Systems
- HIDSS4Health – Helmholtz Information and Data Science School for Health, Karlsruhe, Heidelberg
| | - Karl-Friedrich Kowalewski
- German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Systems and Robotics in Urology (ISRU)
- Department of Urology and Urosurgery, University Medical Center Mannheim, Medical Faculty of the University of Heidelberg
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim
| | - Caelan Max Haney
- German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Systems and Robotics in Urology (ISRU)
- Department of Urology and Urosurgery, University Medical Center Mannheim, Medical Faculty of the University of Heidelberg
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim
| | - Jan Odenthal
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital
| | - Samuel Knödler
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital
| | | | | | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Karsten Schmidt
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | | | - Gabriel Alexander Salg
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital
| | - Anna Dupree
- Department of General, Visceral and Thoracic Surgery, University Medical Center, Hamburg-Eppendorf, Hamburg
| | - Henrik Nienhüser
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital
| | - Arianeb Mehrabi
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital
| | - Thilo Hackert
- Department of General, Visceral and Thoracic Surgery, University Medical Center, Hamburg-Eppendorf, Hamburg
| | - Beat Peter Müller
- Department of Digestive Surgery, University Digestive Healthcare Center Basel, Switzerland
| | - Lena Maier-Hein
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg
- German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Medical Systems
- Faculty of Mathematics and Computer Science, Heidelberg University
- HIDSS4Health – Helmholtz Information and Data Science School for Health, Karlsruhe, Heidelberg
| | - Felix Nickel
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital
- HIDSS4Health – Helmholtz Information and Data Science School for Health, Karlsruhe, Heidelberg
- Department of General, Visceral and Thoracic Surgery, University Medical Center, Hamburg-Eppendorf, Hamburg
| |
Collapse
|
8
|
Studier-Fischer A, Bressan M, Qasim AB, Özdemir B, Sellner J, Seidlitz S, Haney CM, Egen L, Michel M, Dietrich M, Salg GA, Billmann F, Nienhüser H, Hackert T, Müller BP, Maier-Hein L, Nickel F, Kowalewski KF. Spectral characterization of intraoperative renal perfusion using hyperspectral imaging and artificial intelligence. Sci Rep 2024; 14:17262. [PMID: 39068299 PMCID: PMC11283474 DOI: 10.1038/s41598-024-68280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Accurate intraoperative assessment of organ perfusion is a pivotal determinant in preserving organ function e.g. during kidney surgery including partial nephrectomy or kidney transplantation. Hyperspectral imaging (HSI) has great potential to objectively describe and quantify this perfusion as opposed to conventional surrogate techniques such as ultrasound flowmeter, indocyanine green or the subjective eye of the surgeon. An established live porcine model under general anesthesia received median laparotomy and renal mobilization. Different scenarios that were measured using HSI were (1) complete, (2) gradual and (3) partial malperfusion. The differences in spectral reflectance as well as HSI oxygenation (StO2) between different perfusion states were compelling and as high as 56.9% with 70.3% (± 11.0%) for "physiological" vs. 13.4% (± 3.1%) for "venous congestion". A machine learning (ML) algorithm was able to distinguish between these perfusion states with a balanced prediction accuracy of 97.8%. Data from this porcine study including 1300 recordings across 57 individuals was compared to a human dataset of 104 recordings across 17 individuals suggesting clinical transferability. Therefore, HSI is a highly promising tool for intraoperative microvascular evaluation of perfusion states with great advantages over existing surrogate techniques. Clinical trials are required to prove patient benefit.
Collapse
Affiliation(s)
- A Studier-Fischer
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.
- Department of Urology and Urosurgery, Medical Faculty of the University of Heidelberg, University Medical Center Mannheim, Mannheim, Germany.
- Division of Intelligent Systems and Robotics in Urology (ISRU), German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany.
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| | - M Bressan
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - A Bin Qasim
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
- HIDSS4Health - Helmholtz Information and Data Science School for Health, Karlsruhe, Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - B Özdemir
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Division of Intelligent Systems and Robotics in Urology (ISRU), German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - J Sellner
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
- HIDSS4Health - Helmholtz Information and Data Science School for Health, Karlsruhe, Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
| | - S Seidlitz
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
- HIDSS4Health - Helmholtz Information and Data Science School for Health, Karlsruhe, Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
| | - C M Haney
- Department of Urology and Urosurgery, Medical Faculty of the University of Heidelberg, University Medical Center Mannheim, Mannheim, Germany
- Division of Intelligent Systems and Robotics in Urology (ISRU), German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - L Egen
- Department of Urology and Urosurgery, Medical Faculty of the University of Heidelberg, University Medical Center Mannheim, Mannheim, Germany
- Division of Intelligent Systems and Robotics in Urology (ISRU), German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - M Michel
- Department of Urology and Urosurgery, Medical Faculty of the University of Heidelberg, University Medical Center Mannheim, Mannheim, Germany
- Division of Intelligent Systems and Robotics in Urology (ISRU), German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - M Dietrich
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - G A Salg
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - F Billmann
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - H Nienhüser
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - T Hackert
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - B P Müller
- Department of Digestive Surgery, University Digestive Healthcare Center, Basel, Switzerland
| | - L Maier-Hein
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
- HIDSS4Health - Helmholtz Information and Data Science School for Health, Karlsruhe, Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
| | - F Nickel
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- HIDSS4Health - Helmholtz Information and Data Science School for Health, Karlsruhe, Heidelberg, Germany
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - K F Kowalewski
- Department of Urology and Urosurgery, Medical Faculty of the University of Heidelberg, University Medical Center Mannheim, Mannheim, Germany
- Division of Intelligent Systems and Robotics in Urology (ISRU), German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| |
Collapse
|
9
|
Kohnke J, Pattberg K, Nensa F, Kuhlmann H, Brenner T, Schmidt K, Hosch R, Espeter F. A proof of concept for microcirculation monitoring using machine learning based hyperspectral imaging in critically ill patients: a monocentric observational study. Crit Care 2024; 28:230. [PMID: 38987802 PMCID: PMC11238485 DOI: 10.1186/s13054-024-05023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Impaired microcirculation is a cornerstone of sepsis development and leads to reduced tissue oxygenation, influenced by fluid and catecholamine administration during treatment. Hyperspectral imaging (HSI) is a non-invasive bedside technology for visualizing physicochemical tissue characteristics. Machine learning (ML) for skin HSI might offer an automated approach for bedside microcirculation assessment, providing an individualized tissue fingerprint of critically ill patients in intensive care. The study aimed to determine if machine learning could be utilized to automatically identify regions of interest (ROIs) in the hand, thereby distinguishing between healthy individuals and critically ill patients with sepsis using HSI. METHODS HSI raw data from 75 critically ill sepsis patients and from 30 healthy controls were recorded using TIVITA® Tissue System and analyzed using an automated ML approach. Additionally, patients were divided into two groups based on their SOFA scores for further subanalysis: less severely ill (SOFA ≤ 5) and severely ill (SOFA > 5). The analysis of the HSI raw data was fully-automated using MediaPipe for ROI detection (palm and fingertips) and feature extraction. HSI Features were statistically analyzed to highlight relevant wavelength combinations using Mann-Whitney-U test and Benjamini, Krieger, and Yekutieli (BKY) correction. In addition, Random Forest models were trained using bootstrapping, and feature importances were determined to gain insights regarding the wavelength importance for a model decision. RESULTS An automated pipeline for generating ROIs and HSI feature extraction was successfully established. HSI raw data analysis accurately distinguished healthy controls from sepsis patients. Wavelengths at the fingertips differed in the ranges of 575-695 nm and 840-1000 nm. For the palm, significant differences were observed in the range of 925-1000 nm. Feature importance plots indicated relevant information in the same wavelength ranges. Combining palm and fingertip analysis provided the highest reliability, with an AUC of 0.92 to distinguish between sepsis patients and healthy controls. CONCLUSION Based on this proof of concept, the integration of automated and standardized ROIs along with automated skin HSI analyzes, was able to differentiate between healthy individuals and patients with sepsis. This approach offers a reliable and objective assessment of skin microcirculation, facilitating the rapid identification of critically ill patients.
Collapse
Affiliation(s)
- Judith Kohnke
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, Essen, Germany
| | - Kevin Pattberg
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Felix Nensa
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, Essen, Germany
| | - Henning Kuhlmann
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Karsten Schmidt
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - René Hosch
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, Essen, Germany
| | - Florian Espeter
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
10
|
Zhou Y, Zhang L, Huang D, Zhang Y, Zhu L, Chen X, Cui G, Chen Q, Chen X, Ali S. Hyperspectral imaging combined with blood oxygen saturation for in vivo analysis of small intestinal necrosis tissue. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124298. [PMID: 38642522 DOI: 10.1016/j.saa.2024.124298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/14/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
Acute mesenteric ischemia (AMI) is a clinically significant vascular and gastrointestinal condition, which is closely related to the blood supply of the small intestine. Unfortunately, it is still challenging to properly discriminate small intestinal tissues with different degrees of ischemia. In this study, hyperspectral imaging (HSI) was used to construct pseudo-color images of oxygen saturation about small intestinal tissues and to discriminate different degrees of ischemia. First, several small intestine tissue models of New Zealand white rabbits were prepared and collected their hyperspectral data. Then, a set of isosbestic points were used to linearly transform the measurement data twice to match the reference spectra of oxyhemoglobin and deoxyhemoglobin, respectively. The oxygen saturation was measured at the characteristic peak band of oxyhemoglobin (560 nm). Ultimately, using the oxygenated hemoglobin reflectance spectrum as the benchmark, we obtained the relative amount of median oxygen saturation in normal tissues was 70.0 %, the IQR was 10.1 %, the relative amount of median oxygen saturation in ischemic tissues was 49.6 %, and the IQR was 14.6 %. The results demonstrate that HSI combined with the oxygen saturation computation method can efficiently differentiate between normal and ischemic regions of the small intestinal tissues. This technique provides a powerful support for internist to discriminate small bowel tissues with different degrees of ischemia, and also provides a new way of thinking for the diagnosis of AMI.
Collapse
Affiliation(s)
- Yao Zhou
- College of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130000, China; Zhongshan Research Institute, Changchun University of Science and Technology, Zhongshan 528400, China
| | - LeChao Zhang
- College of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130000, China; Zhongshan Research Institute, Changchun University of Science and Technology, Zhongshan 528400, China
| | - DanFei Huang
- College of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130000, China; Zhongshan Research Institute, Changchun University of Science and Technology, Zhongshan 528400, China.
| | - Yong Zhang
- College of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130000, China; Zhongshan Research Institute, Changchun University of Science and Technology, Zhongshan 528400, China
| | - LiBin Zhu
- Pediatric General Surgery, The Second Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaoqing Chen
- Pediatric General Surgery, The Second Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Guihua Cui
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325000, China
| | - Qifan Chen
- Zhongshan Research Institute, Changchun University of Science and Technology, Zhongshan 528400, China
| | - XiaoJing Chen
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325000, China.
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325000, China
| |
Collapse
|
11
|
Pachyn E, Aumiller M, Freymüller C, Linek M, Volgger V, Buchner A, Rühm A, Sroka R. Investigation on the influence of the skin tone on hyperspectral imaging for free flap surgery. Sci Rep 2024; 14:13979. [PMID: 38886457 PMCID: PMC11183063 DOI: 10.1038/s41598-024-64549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Hyperspectral imaging (HSI) is a new emerging modality useful for the noncontact assessment of free flap perfusion. This measurement technique relies on the optical properties within the tissue. Since the optical properties of hemoglobin (Hb) and melanin overlap, the results of the perfusion assessment and other tissue-specific parameters are likely to be distorted by the melanin, especially at higher melanin concentrations. Many spectroscopic devices have been shown to struggle with a melanin related bias, which results in a clinical need to improve non-invasive perfusion assessment, especially for a more pigmented population. This study investigated the influence of skin tones on tissue indices measurements using HSI. In addition, other factors that might affect HSI, such as age, body mass index (BMI), sex or smoking habits, were also considered. Therefore, a prospective feasibility study was conducted, including 101 volunteers from whom tissue indices measurements were performed on 16 different body sites. Skin tone classification was performed using the Fitzpatrick skin type classification questionnaire, and the individual typology angle (ITA) acquired from the RGB images was calculated simultaneously with the measurements. Tissue indices provided by the used HSI-device were correlated to the possible influencing factors. The results show that a dark skin tone and, therefore, higher levels of pigmentation influence the HSI-derived tissue indices. In addition, possible physiological factors influencing the HSI-measurements were found. In conclusion, the HSI-based tissue indices can be used for perfusion assessment for people with lighter skin tone levels but show limitations in people with darker skin tones. Furthermore, it could be used for a more individual perfusion assessment if different physiological influencing factors are respected.
Collapse
Affiliation(s)
- Ester Pachyn
- Department of Urology, Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152, Planegg, Germany.
| | - Maximilian Aumiller
- Department of Urology, Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152, Planegg, Germany
- Department of Urology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Christian Freymüller
- Department of Urology, Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152, Planegg, Germany
- Department of Urology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Matthäus Linek
- Department of Urology, Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152, Planegg, Germany
| | - Veronika Volgger
- Department of Otorhinolaryngology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Alexander Buchner
- Department of Urology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Adrian Rühm
- Department of Urology, Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152, Planegg, Germany
- Department of Urology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Ronald Sroka
- Department of Urology, Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152, Planegg, Germany
- Department of Urology, University Hospital, LMU Munich, 81377, Munich, Germany
| |
Collapse
|
12
|
Schulz T, Köhler H, Kohler LH, Langer S, Nuwayhid R. Hyperspectral Imaging Detects Clitoral Vascular Issues in Gender-Affirming Surgery. Diagnostics (Basel) 2024; 14:1252. [PMID: 38928666 PMCID: PMC11202724 DOI: 10.3390/diagnostics14121252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The aim of this study was to assess the efficacy of hyperspectral imaging (HSI) as an intraoperative perfusion imaging modality during gender affirmation surgery (GAS). The hypothesis posited that HSI could quantify perfusion to the clitoral complex, thereby enabling the prediction of either uneventful wound healing or the occurrence of necrosis. In this non-randomised prospective clinical study, we enrolled 30 patients who underwent GAS in the form of vaginoplasty with the preparation of a clitoral complex from 2020 to 2024 and compared patients' characteristics as well as HSI data regarding clitoris necrosis. Individuals demonstrating uneventful wound healing pertaining to the clitoral complex were designated as Group A. Patients with complete necrosis of the neo-clitoris were assigned to Group B. Patient characteristics were collected and subsequently a comparative analysis carried out. No significant difference in patient characteristics was observed between the two groups. Necrosis occurred when both StO2 and NIR PI parameters fell below 40%. For the simultaneous occurrence of StO2 and NIR PI of 40% or less, a sensitivity of 92% and specificity of 72% was calculated. Intraoperatively, the onset of necrosis in the clitoral complex can be reliably predicted with the assistance of HSI.
Collapse
Affiliation(s)
- Torsten Schulz
- Department of Orthopaedic, Trauma and Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany; (S.L.); (R.N.)
| | - Hannes Köhler
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, 04103 Leipzig, Germany;
| | | | - Stefan Langer
- Department of Orthopaedic, Trauma and Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany; (S.L.); (R.N.)
| | - Rima Nuwayhid
- Department of Orthopaedic, Trauma and Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany; (S.L.); (R.N.)
| |
Collapse
|
13
|
Qasim AB, Motta A, Studier-Fischer A, Sellner J, Ayala L, Hübner M, Bressan M, Özdemir B, Kowalewski KF, Nickel F, Seidlitz S, Maier-Hein L. Test-time augmentation with synthetic data addresses distribution shifts in spectral imaging. Int J Comput Assist Radiol Surg 2024; 19:1021-1031. [PMID: 38483702 PMCID: PMC11178652 DOI: 10.1007/s11548-024-03085-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/22/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE Surgical scene segmentation is crucial for providing context-aware surgical assistance. Recent studies highlight the significant advantages of hyperspectral imaging (HSI) over traditional RGB data in enhancing segmentation performance. Nevertheless, the current hyperspectral imaging (HSI) datasets remain limited and do not capture the full range of tissue variations encountered clinically. METHODS Based on a total of 615 hyperspectral images from a total of 16 pigs, featuring porcine organs in different perfusion states, we carry out an exploration of distribution shifts in spectral imaging caused by perfusion alterations. We further introduce a novel strategy to mitigate such distribution shifts, utilizing synthetic data for test-time augmentation. RESULTS The effect of perfusion changes on state-of-the-art (SOA) segmentation networks depended on the organ and the specific perfusion alteration induced. In the case of the kidney, we observed a performance decline of up to 93% when applying a state-of-the-art (SOA) network under ischemic conditions. Our method improved on the state-of-the-art (SOA) by up to 4.6 times. CONCLUSION Given its potential wide-ranging relevance to diverse pathologies, our approach may serve as a pivotal tool to enhance neural network generalization within the realm of spectral imaging.
Collapse
Affiliation(s)
- Ahmad Bin Qasim
- Division of Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Helmholtz Information and Data Science School for Health, Karlsruhe/Heidelberg, Germany.
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany.
| | - Alessandro Motta
- Division of Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Studier-Fischer
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Jan Sellner
- Division of Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz Information and Data Science School for Health, Karlsruhe/Heidelberg, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership between DKFZ and University Medical Center Heidelberg, Heidelberg, Germany
| | - Leonardo Ayala
- Division of Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Hübner
- Division of Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
| | - Marc Bressan
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Berkin Özdemir
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Karl Friedrich Kowalewski
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Department of Urology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Felix Nickel
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Silvia Seidlitz
- Division of Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz Information and Data Science School for Health, Karlsruhe/Heidelberg, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership between DKFZ and University Medical Center Heidelberg, Heidelberg, Germany
| | - Lena Maier-Hein
- Division of Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz Information and Data Science School for Health, Karlsruhe/Heidelberg, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership between DKFZ and University Medical Center Heidelberg, Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
14
|
Ayala L, Mindroc-Filimon D, Rees M, Hübner M, Sellner J, Seidlitz S, Tizabi M, Wirkert S, Seitel A, Maier-Hein L. The SPECTRAL Perfusion Arm Clamping dAtaset (SPECTRALPACA) for video-rate functional imaging of the skin. Sci Data 2024; 11:536. [PMID: 38796545 PMCID: PMC11127995 DOI: 10.1038/s41597-024-03307-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/24/2024] [Indexed: 05/28/2024] Open
Abstract
Spectral imaging has the potential to become a key technique in interventional medicine as it unveils much richer optical information compared to conventional RBG (red, green, and blue)-based imaging. Thus allowing for high-resolution functional tissue analysis in real time. Its higher information density particularly shows promise for the development of powerful perfusion monitoring methods for clinical use. However, even though in vivo validation of such methods is crucial for their clinical translation, the biomedical field suffers from a lack of publicly available datasets for this purpose. Closing this gap, we generated the SPECTRAL Perfusion Arm Clamping dAtaset (SPECTRALPACA). It comprises ten spectral videos (∼20 Hz, approx. 20,000 frames each) systematically recorded of the hands of ten healthy human participants in different functional states. We paired each spectral video with concisely tracked regions of interest, and corresponding diffuse reflectance measurements recorded with a spectrometer. Providing the first openly accessible in human spectral video dataset for perfusion monitoring, our work facilitates the development and validation of new functional imaging methods.
Collapse
Affiliation(s)
- Leonardo Ayala
- German Cancer Research Center (DKFZ), Division of Intelligent Medical Systems, Heidelberg, Germany.
- Medical Faculty, Heidelberg University, Heidelberg, Germany.
| | - Diana Mindroc-Filimon
- German Cancer Research Center (DKFZ), Division of Intelligent Medical Systems, Heidelberg, Germany
| | - Maike Rees
- German Cancer Research Center (DKFZ), Division of Intelligent Medical Systems, Heidelberg, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
| | - Marco Hübner
- German Cancer Research Center (DKFZ), Division of Intelligent Medical Systems, Heidelberg, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
| | - Jan Sellner
- German Cancer Research Center (DKFZ), Division of Intelligent Medical Systems, Heidelberg, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
- Helmholtz Information and Data Science School for Health, Karlsruhe/Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Silvia Seidlitz
- German Cancer Research Center (DKFZ), Division of Intelligent Medical Systems, Heidelberg, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
- Helmholtz Information and Data Science School for Health, Karlsruhe/Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Minu Tizabi
- German Cancer Research Center (DKFZ), Division of Intelligent Medical Systems, Heidelberg, Germany
| | - Sebastian Wirkert
- German Cancer Research Center (DKFZ), Division of Intelligent Medical Systems, Heidelberg, Germany
| | - Alexander Seitel
- German Cancer Research Center (DKFZ), Division of Intelligent Medical Systems, Heidelberg, Germany
| | - Lena Maier-Hein
- German Cancer Research Center (DKFZ), Division of Intelligent Medical Systems, Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
- Helmholtz Information and Data Science School for Health, Karlsruhe/Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
15
|
Kania A, Branchi V, Braun L, Verrel F, Kalff JC, Vilz TO. [Indications and surgical strategy for bowel resection in mesenteric ischemia : Resection margins considering current guidelines and literature as well as the influence of new technical possibilities]. CHIRURGIE (HEIDELBERG, GERMANY) 2024; 95:367-374. [PMID: 38378936 DOI: 10.1007/s00104-024-02041-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/22/2024]
Abstract
Acute mesenteric ischemia (AMI) is still a time-critical and life-threatening clinical picture. If exploration of the abdominal cavity is necessary during treatment, an intraoperative assessment of which segments of the intestines have a sufficient potential for recovery must be made. These decisions are mostly based on purely clinical parameters, which are subject to high level of uncertainty. This review article provides an overview of how this decision-making process and the determination of resection margins can be improved using technical aids, such as laser Doppler flowmetry (LDF), indocyanine green (ICG) fluorescence angiography or hyperspectral imaging (HSI). Furthermore, this article compiles guideline recommendations on the role of laparoscopy and the value of a planned second-look laparotomy. In addition, an overview of strategies for preventing short bowel syndrome is given and other aspects, such as the timing and technical aspects of placement of a preternatural anus and an anastomosis are highlighted.
Collapse
Affiliation(s)
- Alexander Kania
- Klinik und Poliklinik für Allgemein‑, Viszeral‑, Thorax- und Gefäßchirurgie, Universitätsklinikum Bonn, Venusberg Campus 1, 53127, Bonn, Deutschland.
| | - Vittorio Branchi
- Klinik und Poliklinik für Allgemein‑, Viszeral‑, Thorax- und Gefäßchirurgie, Universitätsklinikum Bonn, Venusberg Campus 1, 53127, Bonn, Deutschland
| | - Lara Braun
- Klinik und Poliklinik für Allgemein‑, Viszeral‑, Thorax- und Gefäßchirurgie, Universitätsklinikum Bonn, Venusberg Campus 1, 53127, Bonn, Deutschland
| | - Frauke Verrel
- Klinik und Poliklinik für Allgemein‑, Viszeral‑, Thorax- und Gefäßchirurgie, Universitätsklinikum Bonn, Venusberg Campus 1, 53127, Bonn, Deutschland
| | - Jörg C Kalff
- Klinik und Poliklinik für Allgemein‑, Viszeral‑, Thorax- und Gefäßchirurgie, Universitätsklinikum Bonn, Venusberg Campus 1, 53127, Bonn, Deutschland
| | - Tim O Vilz
- Klinik und Poliklinik für Allgemein‑, Viszeral‑, Thorax- und Gefäßchirurgie, Universitätsklinikum Bonn, Venusberg Campus 1, 53127, Bonn, Deutschland
| |
Collapse
|
16
|
Gustafsson N, Bunke J, Magnusson L, Albinsson J, Hérnandez-Palacios J, Sheikh R, Malmsjö M, Merdasa A. Optimizing clinical O 2 saturation mapping using hyperspectral imaging and diffuse reflectance spectroscopy in the context of epinephrine injection. BIOMEDICAL OPTICS EXPRESS 2024; 15:1995-2013. [PMID: 38495727 PMCID: PMC10942706 DOI: 10.1364/boe.506492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/27/2023] [Accepted: 11/19/2023] [Indexed: 03/19/2024]
Abstract
Clinical determination of oxygen saturation (sO2) in patients is commonly performed via non-invasive optical techniques. However, reliance on a few wavelengths and some form of pre-determined calibration introduces limits to how these methods can be used. One example involves the assessment of sO2 after injection of local anesthetic using epinephrine, where some controversy exists around the time it takes for the epinephrine to have an effect. This is likely caused by a change in the tissue environment not accounted for by standard calibrated instruments and conventional analysis techniques. The present study aims to account for this changing environment by acquiring absorption spectra using hyperspectral imaging (HSI) and diffuse reflectance spectroscopy (DRS) before, during, and after the injection of local anesthesia containing epinephrine in human volunteers. We demonstrate the need to account for multiple absorbing species when applying linear spectral unmixing in order to obtain more clinically relevant sO2 values. In particular, we demonstrate how the inclusion of water absorption greatly affects the rate at which sO2 seemingly drops, which in turn sheds light on the current debate regarding the time required for local anesthesia with epinephrine to have an effect. In general, this work provides important insight into how spectral analysis methods need to be adapted to specific clinical scenarios to more accurately assess sO2.
Collapse
Affiliation(s)
- Nils Gustafsson
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Ophthalmology, Lund, Sweden
- NanoLund and Solid State Physics, Lund University, SE-221 00, Lund, Sweden
| | - Josefine Bunke
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Ophthalmology, Lund, Sweden
| | - Ludvig Magnusson
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Ophthalmology, Lund, Sweden
| | - John Albinsson
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Ophthalmology, Lund, Sweden
| | - Julio Hérnandez-Palacios
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Ophthalmology, Lund, Sweden
| | - Rafi Sheikh
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Ophthalmology, Lund, Sweden
| | - Malin Malmsjö
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Ophthalmology, Lund, Sweden
| | - Aboma Merdasa
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Ophthalmology, Lund, Sweden
| |
Collapse
|
17
|
Schmidt VM, Zelger P, Wöss C, Fodor M, Hautz T, Schneeberger S, Huck CW, Arora R, Brunner A, Zelger B, Schirmer M, Pallua JD. Handheld hyperspectral imaging as a tool for the post-mortem interval estimation of human skeletal remains. Heliyon 2024; 10:e25844. [PMID: 38375262 PMCID: PMC10875450 DOI: 10.1016/j.heliyon.2024.e25844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
In forensic medicine, estimating human skeletal remains' post-mortem interval (PMI) can be challenging. Following death, bones undergo a series of chemical and physical transformations due to their interactions with the surrounding environment. Post-mortem changes have been assessed using various methods, but estimating the PMI of skeletal remains could still be improved. We propose a new methodology with handheld hyperspectral imaging (HSI) system based on the first results from 104 human skeletal remains with PMIs ranging between 1 day and 2000 years. To differentiate between forensic and archaeological bone material, the Convolutional Neural Network analyzed 65.000 distinct diagnostic spectra: the classification accuracy was 0.58, 0.62, 0.73, 0.81, and 0.98 for PMIs of 0 week-2 weeks, 2 weeks-6 months, 6 months-1 year, 1 year-10 years, and >100 years, respectively. In conclusion, HSI can be used in forensic medicine to distinguish bone materials >100 years old from those <10 years old with an accuracy of 98%. The model has adequate predictive performance, and handheld HSI could serve as a novel approach to objectively and accurately determine the PMI of human skeletal remains.
Collapse
Affiliation(s)
- Verena-Maria Schmidt
- Institute of Forensic Medicine, Medical University of Innsbruck, Muellerstraße 44, 6020 Innsbruck, Austria
| | - Philipp Zelger
- University Clinic for Hearing, Voice and Speech Disorders, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Claudia Wöss
- Institute of Forensic Medicine, Medical University of Innsbruck, Muellerstraße 44, 6020 Innsbruck, Austria
| | - Margot Fodor
- OrganLifeTM, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Theresa Hautz
- OrganLifeTM, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- OrganLifeTM, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Wolfgang Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Rohit Arora
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Andrea Brunner
- Institute of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria
| | - Bettina Zelger
- Institute of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria
| | - Michael Schirmer
- Department of Internal Medicine, Clinic II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Johannes Dominikus Pallua
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| |
Collapse
|
18
|
Ma L, Pruitt K, Fei B. Dual-camera laparoscopic imaging with super-resolution reconstruction for intraoperative hyperspectral image guidance. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2024; 12928:129280I. [PMID: 38752166 PMCID: PMC11094590 DOI: 10.1117/12.3006573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Laparoscopic and robotic surgery, as one type of minimally invasive surgery (MIS), has gained popularity due to the improved surgeon ergonomics, instrument precision, operative time, and postoperative recovery. Hyperspectral imaging (HSI) is an emerging medical imaging modality, which has proved useful for intraoperative image guidance. Snapshot hyperspectral cameras are ideal for intraoperative laparoscopic imaging because of their compact size and light weight, but low spatial resolution can be a limitation. In this work, we developed a dual-camera laparoscopic imaging system that consists of a high-resolution color camera and a snapshot hyperspectral camera, and we employed super-resolution reconstruction to fuse the images from both cameras to generate high-resolution hyperspectral images. The experimental results show that our method can significantly improve the resolution of hyperspectral images without compromising the image quality or spectral signatures. The proposed super-resolution reconstruction method is promising to promote the employment of high-speed hyperspectral imaging in laparoscopic surgery.
Collapse
Affiliation(s)
- Ling Ma
- Center for Imaging and Surgical Innovation, University of Texas at Dallas, Richardson, TX
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX
| | - Kelden Pruitt
- Center for Imaging and Surgical Innovation, University of Texas at Dallas, Richardson, TX
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX
| | - Baowei Fei
- Center for Imaging and Surgical Innovation, University of Texas at Dallas, Richardson, TX
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
19
|
Felicio-Briegel A, Linek M, Sroka R, Rühm A, Freymüller C, Stocker M, Baumeister P, Reichel C, Volgger V. Hyperspectral imaging for monitoring of free flaps of the oral cavity: A feasibility study. Lasers Surg Med 2024; 56:165-174. [PMID: 38247042 DOI: 10.1002/lsm.23756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024]
Abstract
OBJECTIVES Hyperspectral imaging (HSI) provides spectral information about hemoglobin, water and oxygen supply and has thus great potential in perfusion monitoring. The aim of the present study was to investigate the feasibility of HSI in the postoperative monitoring of intraoral free flaps. METHODS The 14 patients receiving reconstructive head and neck surgery with a radial forearm free flap were included. HSI was performed intraoperatively (t0), on Day 1 (t1), 2 (t2), 3-6 (t3), 7-9 (t4), 10-11 (t5) and 12-15 (t6) postoperatively. Flap tissue perfusion was assessed on defined regions of interest by calculating the perfusion indices Tissue Hemoglobin Index (THI), hemoglobin oxygenation (StO2 ), Near Infrared Perfusion Index (NIR Perfusion Index) and Tissue Water Index (TWI). RESULTS Image quality varied depending on location of the flap and time of measurement. StO2 was >50 intraoperatively and >40 on t1 for all patients. A significant difference was found solely for TWI between t0 and t2 and t0 and t4. No flap loss occurred. CONCLUSIONS The use of HSI in the monitoring of intraoral flaps is feasible and might become a valuable addition to the current clinical examination of free flaps.
Collapse
Affiliation(s)
| | - Matthäus Linek
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Planegg, Germany
| | - Ronald Sroka
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Planegg, Germany
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Adrian Rühm
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Planegg, Germany
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Freymüller
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Planegg, Germany
| | - Magdalena Stocker
- Department of Otorhinolaryngology, University Hospital Salzburg, Salzburg, Austria
| | - Philipp Baumeister
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Munich, Germany
| | - Christoph Reichel
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Munich, Germany
| | - Veronika Volgger
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
20
|
De Winne J, Strumane A, Babin D, Luthman S, Luong H, Philips W. Multispectral indices for real-time and non-invasive tissue ischemia monitoring using snapshot cameras. BIOMEDICAL OPTICS EXPRESS 2024; 15:641-655. [PMID: 38404312 PMCID: PMC10890856 DOI: 10.1364/boe.506084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 02/27/2024]
Abstract
An adequate supply of oxygen-rich blood is vital to maintain cell homeostasis, cellular metabolism, and overall tissue health. While classical methods of measuring tissue ischemia are often invasive, localized and require skin contact or contrast agents, spectral imaging shows promise as a non-invasive, wide field, and contrast-free approach. We evaluate three novel reflectance-based spectral indices from the 460 - 840 nm spectral range. With the aim of enabling real time visualization of tissue ischemia, information is extracted from only 2-3 spectral bands. Video-rate spectral data was acquired from arm occlusion experiments in 27 healthy volunteers. The performance of the indices was evaluated against binary Support Vector Machine (SVM) classification of healthy versus ischemic skin tissue, two other indices from literature, and tissue oxygenation estimated using spectral unmixing. Robustness was tested by evaluating these under various lighting conditions and on both the dorsal and palmar sides of the hand. A novel index with real-time capabilities using reflectance information only from 547 nm and 556 nm achieves an average classification accuracy of 88.48, compared to 92.65 using an SVM trained on all available wavelengths. Furthermore, the index has a higher accuracy compared to reference methods and its time dynamics compare well against the expected clinical responses. This holds promise for robust real-time detection of tissue ischemia, possibly contributing to improved patient care and clinical outcomes.
Collapse
Affiliation(s)
- Jens De Winne
- Department of Telecommunications and Information Processing (TELIN) - PI Research Group, Ghent University-imec, 9000 Ghent, Belgium
- Interuniversity Micro-Electronics Center (IMEC) vzw, 3000 Leuven, Belgium
| | - Anoek Strumane
- Department of Telecommunications and Information Processing (TELIN) - PI Research Group, Ghent University-imec, 9000 Ghent, Belgium
| | - Danilo Babin
- Department of Telecommunications and Information Processing (TELIN) - PI Research Group, Ghent University-imec, 9000 Ghent, Belgium
| | - Siri Luthman
- Interuniversity Micro-Electronics Center (IMEC) vzw, 3000 Leuven, Belgium
| | - Hiep Luong
- Department of Telecommunications and Information Processing (TELIN) - PI Research Group, Ghent University-imec, 9000 Ghent, Belgium
| | - Wilfried Philips
- Department of Telecommunications and Information Processing (TELIN) - PI Research Group, Ghent University-imec, 9000 Ghent, Belgium
| |
Collapse
|
21
|
Pruitt K, Rathgeb A, Gahan JC, Johnson BA, Strand DW, Fei B. A dual-camera hyperspectral laparoscopic imaging system. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2024; 12831:1283107. [PMID: 38708175 PMCID: PMC11069412 DOI: 10.1117/12.3005893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Minimally invasive surgery (MIS) has expanded broadly in the field of abdominal and pelvic surgery. However, there are still prevalent issues surrounding intracorporeal surgery, such as iatrogenic injury, anastomotic leakage, or the presence of positive tumor margins after resection. Current approaches to address these issues and advance laparoscopic imaging techniques often involve fluorescence imaging agents, such as indocyanine green (ICG), to improve visualization, but these have drawbacks. Hyperspectral imaging (HSI) is an emerging optical imaging modality that takes advantage of spectral characteristics of different tissues. Various applications include tissue classification and digital pathology. In this study, we developed a dual-camera system for high-speed hyperspectral imaging. This includes the development of a custom application interface and corresponding hardware setup. Characterization of the system was performed, including spectral accuracy and spatial resolution, showing little sacrifice in speed for the approximate doubling of the covered spectral range, with our system acquiring 29 spectral images from 460-850 nm. Reference color tiles with various reflectance profiles were imaged and a RMSE of 3.56 ± 1.36% was achieved. Sub-millimeter resolution was shown at 7 cm working distance for both hyperspectral cameras. Finally, we image ex vivo tissues, including porcine stomach, liver, intestine, and kidney with our system and use a high-resolution, radiometrically calibrated spectrometer for comparison and evaluation of spectral fidelity. The dual-camera hyperspectral laparoscopic imaging system can have immediate applications in various surgeries.
Collapse
Affiliation(s)
- Kelden Pruitt
- Center for Imaging and Surgical Innovation, University of Texas at Dallas, Richardson, TX
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX
| | - Armand Rathgeb
- Center for Imaging and Surgical Innovation, University of Texas at Dallas, Richardson, TX
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX
| | - Jeffrey C. Gahan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Brett A. Johnson
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Douglas W. Strand
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Baowei Fei
- Center for Imaging and Surgical Innovation, University of Texas at Dallas, Richardson, TX
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
22
|
Studier-Fischer A, Schwab FM, Rees M, Seidlitz S, Sellner J, Özdemir B, Ayala L, Odenthal J, Knoedler S, Kowalewski KF, Haney CM, Dietrich M, Salg GA, Kenngott HG, Müller-Stich BP, Maier-Hein L, Nickel F. ICG-augmented hyperspectral imaging for visualization of intestinal perfusion compared to conventional ICG fluorescence imaging: an experimental study. Int J Surg 2023; 109:3883-3895. [PMID: 38258996 PMCID: PMC10720797 DOI: 10.1097/js9.0000000000000706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/13/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Small bowel malperfusion (SBM) can cause high morbidity and severe surgical consequences. However, there is no standardized objective measuring tool for the quantification of SBM. Indocyanine green (ICG) imaging can be used for visualization, but lacks standardization and objectivity. Hyperspectral imaging (HSI) as a newly emerging technology in medicine might present advantages over conventional ICG fluorescence or in combination with it. METHODS HSI baseline data from physiological small bowel, avascular small bowel and small bowel after intravenous application of ICG was recorded in a total number of 54 in-vivo pig models. Visualizations of avascular small bowel after mesotomy were compared between HSI only (1), ICG-augmented HSI (IA-HSI) (2), clinical evaluation through the eyes of the surgeon (3) and conventional ICG imaging (4). The primary research focus was the localization of resection borders as suggested by each of the four methods. Distances between these borders were measured and histological samples were obtained from the regions in between in order to quantify necrotic changes 6 h after mesotomy for every region. RESULTS StO2 images (1) were capable of visualizing areas of physiological perfusion and areas of clearly impaired perfusion. However, exact borders where physiological perfusion started to decrease could not be clearly identified. Instead, IA-HSI (2) suggested a sharp-resection line where StO2 values started to decrease. Clinical evaluation (3) suggested a resection line 23 mm (±7 mm) and conventional ICG imaging (4) even suggested a resection line 53 mm (±13 mm) closer towards the malperfused region. Histopathological evaluation of the region that was sufficiently perfused only according to conventional ICG (R3) already revealed a significant increase in pre-necrotic changes in 27% (±9%) of surface area. Therefore, conventional ICG seems less sensitive than IA-HSI with regards to detection of insufficient tissue perfusion. CONCLUSIONS In this experimental animal study, IA-HSI (2) was superior for the visualization of segmental SBM compared to conventional HSI imaging (1), clinical evaluation (3) or conventional ICG imaging (4) regarding histopathological safety. ICG application caused visual artifacts in the StO2 values of the HSI camera as values significantly increase. This is caused by optical properties of systemic ICG and does not resemble a true increase in oxygenation levels. However, this empirical finding can be used to visualize segmental SBM utilizing ICG as contrast agent in an approach for IA-HSI. Clinical applicability and relevance will have to be explored in clinical trials. LEVEL OF EVIDENCE Not applicable. Translational animal science. Original article.
Collapse
Affiliation(s)
| | | | - Maike Rees
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ)
- Faculty of Mathematics and Computer Science
| | - Silvia Seidlitz
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ)
- Faculty of Mathematics and Computer Science
- HIDSS4Health—Helmholtz Information and Data Science School for Health, Karlsruhe
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg
| | - Jan Sellner
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ)
- Faculty of Mathematics and Computer Science
- HIDSS4Health—Helmholtz Information and Data Science School for Health, Karlsruhe
| | - Berkin Özdemir
- Departments ofGeneral, Visceral, and Transplantation Surgery
| | - Leonardo Ayala
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ)
- Medical Faculty, Heidelberg University
| | - Jan Odenthal
- Departments ofGeneral, Visceral, and Transplantation Surgery
| | - Samuel Knoedler
- Departments ofGeneral, Visceral, and Transplantation Surgery
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | | | | | | | | | | | | | - Lena Maier-Hein
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ)
- Faculty of Mathematics and Computer Science
- HIDSS4Health—Helmholtz Information and Data Science School for Health, Karlsruhe
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg
| | - Felix Nickel
- Departments ofGeneral, Visceral, and Transplantation Surgery
- HIDSS4Health—Helmholtz Information and Data Science School for Health, Karlsruhe
- Department of General, Visceral, and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
23
|
Kuhlmann H, Garczarek L, Künne D, Pattberg K, Skarabis A, Frank M, Schmidt B, Arends S, Herbstreit F, Brenner T, Schmidt K, Espeter F. Bedside Hyperspectral Imaging and Organ Dysfunction Severity in Critically Ill COVID-19 Patients-A Prospective, Monocentric Observational Study. Bioengineering (Basel) 2023; 10:1167. [PMID: 37892897 PMCID: PMC10604239 DOI: 10.3390/bioengineering10101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 09/17/2023] [Indexed: 10/29/2023] Open
Abstract
Hyperspectral imaging (HSI) is a non-invasive technology that provides information on biochemical tissue properties, including skin oxygenation and perfusion quality. Microcirculatory alterations are associated with organ dysfunction in septic COVID-19 patients. This prospective observational study investigated associations between skin HSI and organ dysfunction severity in critically ill COVID-19 patients. During the first seven days in the ICU, palmar HSI measurements were carried out with the TIVITA® tissue system. We report data from 52 critically ill COVID-19 patients, of whom 40 required extracorporeal membrane oxygenation (ECMO). HSI parameters for superficial tissue oxygenation (StO2) and oxygenation and perfusion quality (NPI) were persistently decreased. Hemoglobin tissue content (THI) increased, and tissue water content (TWI) was persistently elevated. Regression analysis showed strong indications for an association of NPI and weaker indications for associations of StO2, THI, and TWI with sequential organ failure assessment (SOFA) scoring. StO2 and NPI demonstrated negative associations with vasopressor support and lactate levels as well as positive associations with arterial oxygen saturation. These results suggest that skin HSI provides clinically relevant information, opening new perspectives for microcirculatory monitoring in critical care.
Collapse
Affiliation(s)
- Henning Kuhlmann
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Lena Garczarek
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - David Künne
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Kevin Pattberg
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Annabell Skarabis
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Mirjam Frank
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Börge Schmidt
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Sven Arends
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Frank Herbstreit
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Karsten Schmidt
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Florian Espeter
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
24
|
Renna MS, Grzeda MT, Bailey J, Hainsworth A, Ourselin S, Ebner M, Vercauteren T, Schizas A, Shapey J. Intraoperative bowel perfusion assessment methods and their effects on anastomotic leak rates: meta-analysis. Br J Surg 2023; 110:1131-1142. [PMID: 37253021 PMCID: PMC10416696 DOI: 10.1093/bjs/znad154] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/24/2023] [Accepted: 04/29/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Anastomotic leak is one of the most feared complications of colorectal surgery, and probably linked to poor blood supply to the anastomotic site. Several technologies have been described for intraoperative assessment of bowel perfusion. This systematic review and meta-analysis aimed to evaluate the most frequently used bowel perfusion assessment modalities in elective colorectal procedures, and to assess their associated risk of anastomotic leak. Technologies included indocyanine green fluorescence angiography, diffuse reflectance spectroscopy, laser speckle contrast imaging, and hyperspectral imaging. METHODS The review was preregistered with PROSPERO (CRD42021297299). A comprehensive literature search was performed using Embase, MEDLINE, Cochrane Library, Scopus, and Web of Science. The final search was undertaken on 29 July 2022. Data were extracted by two reviewers and the MINORS criteria were applied to assess the risk of bias. RESULTS Some 66 eligible studies involving 11 560 participants were included. Indocyanine green fluorescence angiography was most used with 10 789 participants, followed by diffuse reflectance spectroscopy with 321, hyperspectral imaging with 265, and laser speckle contrast imaging with 185. In the meta-analysis, the total pooled effect of an intervention on anastomotic leak was 0.05 (95 per cent c.i. 0.04 to 0.07) in comparison with 0.10 (0.08 to 0.12) without. Use of indocyanine green fluorescence angiography, hyperspectral imaging, or laser speckle contrast imaging was associated with a significant reduction in anastomotic leak. CONCLUSION Bowel perfusion assessment reduced the incidence of anastomotic leak, with intraoperative indocyanine green fluorescence angiography, hyperspectral imaging, and laser speckle contrast imaging all demonstrating comparable results.
Collapse
Affiliation(s)
- Maxwell S Renna
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of General Surgery, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Mariusz T Grzeda
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - James Bailey
- Department of General Surgery, University of Nottingham, Nottingham, UK
| | - Alison Hainsworth
- Department of General Surgery, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Hypervision Surgical Ltd, London, UK
| | | | - Tom Vercauteren
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Hypervision Surgical Ltd, London, UK
| | - Alexis Schizas
- Department of General Surgery, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Jonathan Shapey
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Hypervision Surgical Ltd, London, UK
- Department of Neurosurgery, King’s College Hospital, London, UK
| |
Collapse
|
25
|
Doyle K, Magbagbeola M, Rai ZL, Waterhouse D, Lindenroth L, Dwyer G, Gander A, Stilli A, Davidson BR, Stoyanov D. The Application of Machine Perfusion as an Enhanced ex vivo Model for Optical Imaging. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-7. [PMID: 38083568 DOI: 10.1109/embc40787.2023.10341091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Optical imaging techniques such as spectral imaging show promise for the assessment of tissue health during surgery; however, the validation and translation of such techniques into clinical practise is limited by the lack of representative tissue models. In this paper, we demonstrate the application of an organ perfusion machine as an ex vivo tissue model for optical imaging. Three porcine livers are perfused at stepped blood oxygen saturations. Over the duration of each perfusion, spectral data of the tissue are captured via diffuse optical spectroscopy and multispectral imaging. These data are synchronised with blood oxygen saturation measurements recorded by the perfusion machine. Shifts in the optical properties of the tissue are demonstrated over the duration of the each perfusion, as the tissue becomes reperfused and as the oxygen saturation is varied.
Collapse
|
26
|
Chang M, Lee W, Jeong KY, Kim JW. Optimal Hyperspectral Band Selection for Tissue Oxygenation Mapping with Generative Adversarial Network. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082981 DOI: 10.1109/embc40787.2023.10340032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Tissue oxygenation assessment using hyperspectral imaging is an emerging technique for the diagnosis and pre- and post-treatment monitoring of ischemic patients. However, the high spectral resolution of hyperspectral imaging leads to large data sizes and a long imaging time. In this study, we propose a method that utilizes multi-objective evolutionary algorithms to determine the optimal hyperspectral band combination when developing a deep learning model for predicting tissue oxygenation from hyperspectral images. Our results confirm that the deep learning model effectively predicts tissue oxygenation images for various oxygenation states. Moreover, we demonstrate that a high-performance prediction model can be developed using only a small number of spectral bands, indicating the potential for more efficient non-contact tissue oxygenation mapping with the proposed method.Clinical Relevance- The proposed method allows for the non-contact and efficient acquisition of two-dimensional tissue oxygenation information in various oxygenation states.
Collapse
|
27
|
Studier-Fischer A, Seidlitz S, Sellner J, Bressan M, Özdemir B, Ayala L, Odenthal J, Knoedler S, Kowalewski KF, Haney CM, Salg G, Dietrich M, Kenngott H, Gockel I, Hackert T, Müller-Stich BP, Maier-Hein L, Nickel F. HeiPorSPECTRAL - the Heidelberg Porcine HyperSPECTRAL Imaging Dataset of 20 Physiological Organs. Sci Data 2023; 10:414. [PMID: 37355750 PMCID: PMC10290660 DOI: 10.1038/s41597-023-02315-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023] Open
Abstract
Hyperspectral Imaging (HSI) is a relatively new medical imaging modality that exploits an area of diagnostic potential formerly untouched. Although exploratory translational and clinical studies exist, no surgical HSI datasets are openly accessible to the general scientific community. To address this bottleneck, this publication releases HeiPorSPECTRAL ( https://www.heiporspectral.org ; https://doi.org/10.5281/zenodo.7737674 ), the first annotated high-quality standardized surgical HSI dataset. It comprises 5,758 spectral images acquired with the TIVITA® Tissue and annotated with 20 physiological porcine organs from 8 pigs per organ distributed over a total number of 11 pigs. Each HSI image features a resolution of 480 × 640 pixels acquired over the 500-1000 nm wavelength range. The acquisition protocol has been designed such that the variability of organ spectra as a function of several parameters including the camera angle and the individual can be assessed. A comprehensive technical validation confirmed both the quality of the raw data and the annotations. We envision potential reuse within this dataset, but also its reuse as baseline data for future research questions outside this dataset. Measurement(s) Spectral Reflectance Technology Type(s) Hyperspectral Imaging Sample Characteristic - Organism Sus scrofa.
Collapse
Affiliation(s)
- Alexander Studier-Fischer
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Silvia Seidlitz
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
- HIDSS4Health - Helmholtz Information and Data Science School for Health, Karlsruhe, Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Jan Sellner
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
- HIDSS4Health - Helmholtz Information and Data Science School for Health, Karlsruhe, Heidelberg, Germany
| | - Marc Bressan
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Berkin Özdemir
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Leonardo Ayala
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Jan Odenthal
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Samuel Knoedler
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Karl-Friedrich Kowalewski
- Department of Urology, Medical Faculty of Mannheim at the University of Heidelberg, Mannheim, Germany
| | - Caelan Max Haney
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Gabriel Salg
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Maximilian Dietrich
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hannes Kenngott
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Hospital, Leipzig, Germany
| | - Thilo Hackert
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Department of General, Visceral, and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Beat Peter Müller-Stich
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Lena Maier-Hein
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
- HIDSS4Health - Helmholtz Information and Data Science School for Health, Karlsruhe, Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Nickel
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.
- HIDSS4Health - Helmholtz Information and Data Science School for Health, Karlsruhe, Heidelberg, Germany.
- Department of General, Visceral, and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
28
|
Traber J, Wild T, Marotz J, Berli MC, Franco-Obregón A. Concurrent Optical- and Magnetic-Stimulation-Induced Changes on Wound Healing Parameters, Analyzed by Hyperspectral Imaging: An Exploratory Case Series. Bioengineering (Basel) 2023; 10:750. [PMID: 37508777 PMCID: PMC10376418 DOI: 10.3390/bioengineering10070750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
The effects of concurrent optical and magnetic stimulation (COMS) therapy on wound-healing-related parameters, such as tissue oxygenation and water index, were analyzed by hyperspectral imaging: an exploratory case series. Background: Oedema and inadequate perfusion have been identified as key factors in delayed wound healing and have been linked to reduced mitochondrial respiration. Targeting mitochondrial dysfunction is a promising approach in the treatment of therapy refractory wounds. This sub-study aimed to investigate the effects of concurrent optical and magnetic stimulation (COMS) on oedema and perfusion through measuring tissue oxygenation and water index, using hyperspectral imaging. Patients and methods: In a multi-center, prospective, comparative clinical trial, eleven patients with chronic leg and foot ulcers were treated with COMS additively to Standard of Care (SOC). Hyperspectral images were collected during patient visits before and after treatment to assess short- and long-term hemodynamic and immunomodulatory effects through changes in tissue oxygenation and water index. Results: The average time for wound onset in the eleven patients analyzed was 183 days, with 64% of them being considered unresponsive to SOC. At week 12, the rate of near-complete and complete wound closure was 64% and 45%, respectively. COMS therapy with SOC resulted in an increased short-term tissue oxygenation over the 8-week treatment phase, with oxygen levels decreasing in-between patient visits. The study further found a decrease in tissue water content after the therapy, with a general accumulation of water levels in-between patient visits. This study's long-term analysis was hindered by the lack of absolute values in hyperspectral imaging and the dynamic nature of patient parameters during visits, resulting in high interpatient and intervisit variability. Conclusions: This study showed that COMS therapy as an adjunct to SOC had a positive short-term effect on inflammation and tissue oxygenation in chronic wounds of various etiologies. These results further supported the body of evidence for safety and effectiveness of COMS therapy as a treatment option, especially for stagnant wounds that tended to stay in the inflammatory phase and required efficient phase transition towards healing.
Collapse
Affiliation(s)
- Jürg Traber
- Venenklinik Bellevue, Brückenstrasse 9, 8280 Kreuzlingen, Switzerland
| | - Thomas Wild
- Clinic of Plastic, Hand and Aesthetic Surgery Burn Center, BG Clinic Bergmannstrost, 06112 Halle (Saale), Germany
- Medical University Halle, Outpatient and Operating Center, Martin-Luther University Halle (Saale), 06112 Halle (Saale), Germany
- Institute of Applied Bioscience and Process Management Head of Education Course "Academic Wound Consultant", University of Applied Science Anhalt, 06366 Koethen, Germany
| | - Jörg Marotz
- BG-Klinikum Bergmannstrost, 06112 Halle (Saale), Germany
| | - Martin C Berli
- Department of Surgery, Spital Limmattal, 8952 Schlieren, Switzerland
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
29
|
Li P, Asad M, Horgan C, MacCormac O, Shapey J, Vercauteren T. Spatial gradient consistency for unsupervised learning of hyperspectral demosaicking: application to surgical imaging. Int J Comput Assist Radiol Surg 2023; 18:981-988. [PMID: 36961613 PMCID: PMC10284955 DOI: 10.1007/s11548-023-02865-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/03/2023] [Indexed: 03/25/2023]
Abstract
PURPOSE Hyperspectral imaging has the potential to improve intraoperative decision making if tissue characterisation is performed in real-time and with high-resolution. Hyperspectral snapshot mosaic sensors offer a promising approach due to their fast acquisition speed and compact size. However, a demosaicking algorithm is required to fully recover the spatial and spectral information of the snapshot images. Most state-of-the-art demosaicking algorithms require ground-truth training data with paired snapshot and high-resolution hyperspectral images, but such imagery pairs with the exact same scene are physically impossible to acquire in intraoperative settings. In this work, we present a fully unsupervised hyperspectral image demosaicking algorithm which only requires exemplar snapshot images for training purposes. METHODS We regard hyperspectral demosaicking as an ill-posed linear inverse problem which we solve using a deep neural network. We take advantage of the spectral correlation occurring in natural scenes to design a novel inter spectral band regularisation term based on spatial gradient consistency. By combining our proposed term with standard regularisation techniques and exploiting a standard data fidelity term, we obtain an unsupervised loss function for training deep neural networks, which allows us to achieve real-time hyperspectral image demosaicking. RESULTS Quantitative results on hyperspetral image datasets show that our unsupervised demosaicking approach can achieve similar performance to its supervised counter-part, and significantly outperform linear demosaicking. A qualitative user study on real snapshot hyperspectral surgical images confirms the results from the quantitative analysis. CONCLUSION Our results suggest that the proposed unsupervised algorithm can achieve promising hyperspectral demosaicking in real-time thus advancing the suitability of the modality for intraoperative use.
Collapse
Affiliation(s)
- Peichao Li
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| | - Muhammad Asad
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Conor Horgan
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Oscar MacCormac
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Jonathan Shapey
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Tom Vercauteren
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
30
|
Thoenissen P, Heselich A, Al-Maawi S, Sader R, Ghanaati S. Hyperspectral Imaging Allows Evaluation of Free Flaps in Craniomaxillofacial Reconstruction. J Craniofac Surg 2023; 34:e212-e216. [PMID: 36168125 DOI: 10.1097/scs.0000000000009009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Treatment of extended defects after tumor resection in oral, maxillofacial, and facial surgery (craniomaxillofacial) is usually performed by free microvascular flaps. Evaluation of flap survival is crucial, especially in the first hours after insertion and connection. For flap evaluation various invasive and noninvasive methods have been developed. This retrospective clinical study examined the ability of a hyperspectral imaging (HSI) camera (Tivita, Diaspective Vision, Germany) to assess postoperative flap properties in comparison to established clinical parameters. MATERIALS AND METHODS Thirteen patients with tumor resection and free flap reconstruction were included for camera analysis and another 10 patients as control group. For this purpose, at defined time intervals and under standardized conditions, recordings of transplants 3 to 100 hours postoperatively were performed. Images were used to examine oxygenation (StO 2 %), tissue hemoglobin index, tissue water index, near infrared range perfusion index of free flaps quantitatively and qualitatively. RESULTS HSI provides values differing between patients observed with no intraindividual significant difference. After 24 hours a mean reduction of 16.77% for StO 2 %, 9.16% for tissue hemoglobin index and 8.46% was observed, going in line with no loss of flap was noted in the observation period. CONCLUSION HSI is suitable as a noninvasive measure for the evaluation of free flaps in craniomaxillofacial surgery in case of stable imaging conditions with respect to light, surrounding and position of the camera. However, clinical measurements are still the method of choice.
Collapse
Affiliation(s)
- Philipp Thoenissen
- Clinic for Oral-, Craniomaxillofacial and Facial Plastic Surgery, University Hospital of the Goethe University, Frankfurt, Germany
| | | | | | | | | |
Collapse
|
31
|
Famularo S, Bannone E, Collins T, Reitano E, Okamoto N, Mishima K, Riva P, Tsai YC, Nkusi R, Hostettler A, Marescaux J, Felli E, Diana M. Partial Hepatic Vein Occlusion and Venous Congestion in Liver Exploration Using a Hyperspectral Camera: A Proposal for Monitoring Intraoperative Liver Perfusion. Cancers (Basel) 2023; 15:cancers15082397. [PMID: 37190325 DOI: 10.3390/cancers15082397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
INTRODUCTION The changes occurring in the liver in cases of outflow deprivation have rarely been investigated, and no measurements of this phenomenon are available. This investigation explored outflow occlusion in a pig model using a hyperspectral camera. METHODS Six pigs were enrolled. The right hepatic vein was clamped for 30 min. The oxygen saturation (StO2%), deoxygenated hemoglobin level (de-Hb), near-infrared perfusion (NIR), and total hemoglobin index (THI) were investigated at different time points in four perfused lobes using a hyperspectral camera measuring light absorbance between 500 nm and 995 nm. Differences among lobes at different time points were estimated by mixed-effect linear regression. RESULTS StO2% decreased over time in the right lateral lobe (RLL, totally occluded) when compared to the left lateral (LLL, outflow preserved) and the right medial (RML, partially occluded) lobes (p < 0.05). De-Hb significantly increased after clamping in RLL when compared to RML and LLL (p < 0.05). RML was further analyzed considering the right portion (totally occluded) and the left portion of the lobe (with an autonomous draining vein). StO2% decreased and de-Hb increased more smoothly when compared to the totally occluded RLL (p < 0.05). CONCLUSIONS The variations of StO2% and deoxy-Hb could be considered good markers of venous liver congestion.
Collapse
Affiliation(s)
- Simone Famularo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20133 Milan, Italy
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
- Research Institute against Digestive Cancer (IRCAD), 67091 Strasbourg, France
| | - Elisa Bannone
- Research Institute against Digestive Cancer (IRCAD), 67091 Strasbourg, France
- Department of General Surgery, Poliambulanza Foundation Hospital, 25124 Brescia, Italy
| | - Toby Collins
- Research Institute against Digestive Cancer (IRCAD), 67091 Strasbourg, France
| | - Elisa Reitano
- Research Institute against Digestive Cancer (IRCAD), 67091 Strasbourg, France
| | - Nariaki Okamoto
- Research Institute against Digestive Cancer (IRCAD), 67091 Strasbourg, France
- Photonics Instrumentation for Health, iCube Laboratory, University of Strasbourg, 67000 Strasbourg, France
| | - Kohei Mishima
- Research Institute against Digestive Cancer (IRCAD), 67091 Strasbourg, France
| | - Pietro Riva
- Research Institute against Digestive Cancer (IRCAD), 67091 Strasbourg, France
- Department of General, Digestive and Endocrine Surgery, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Yu-Chieh Tsai
- Research Institute against Digestive Cancer (IRCAD), 67091 Strasbourg, France
| | - Richard Nkusi
- Research Institute against Digestive Cancer (IRCAD), 67091 Strasbourg, France
| | | | - Jacques Marescaux
- Research Institute against Digestive Cancer (IRCAD), 67091 Strasbourg, France
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| | - Eric Felli
- Research Institute against Digestive Cancer (IRCAD), 67091 Strasbourg, France
- Department of General, Digestive and Endocrine Surgery, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Michele Diana
- Research Institute against Digestive Cancer (IRCAD), 67091 Strasbourg, France
- Photonics Instrumentation for Health, iCube Laboratory, University of Strasbourg, 67000 Strasbourg, France
- Department of General, Digestive and Endocrine Surgery, University Hospital of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
32
|
Tran MH, Fei B. Compact and ultracompact spectral imagers: technology and applications in biomedical imaging. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:040901. [PMID: 37035031 PMCID: PMC10075274 DOI: 10.1117/1.jbo.28.4.040901] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/27/2023] [Indexed: 05/18/2023]
Abstract
Significance Spectral imaging, which includes hyperspectral and multispectral imaging, can provide images in numerous wavelength bands within and beyond the visible light spectrum. Emerging technologies that enable compact, portable spectral imaging cameras can facilitate new applications in biomedical imaging. Aim With this review paper, researchers will (1) understand the technological trends of upcoming spectral cameras, (2) understand new specific applications that portable spectral imaging unlocked, and (3) evaluate proper spectral imaging systems for their specific applications. Approach We performed a comprehensive literature review in three databases (Scopus, PubMed, and Web of Science). We included only fully realized systems with definable dimensions. To best accommodate many different definitions of "compact," we included a table of dimensions and weights for systems that met our definition. Results There is a wide variety of contributions from industry, academic, and hobbyist spaces. A variety of new engineering approaches, such as Fabry-Perot interferometers, spectrally resolved detector array (mosaic array), microelectro-mechanical systems, 3D printing, light-emitting diodes, and smartphones, were used in the construction of compact spectral imaging cameras. In bioimaging applications, these compact devices were used for in vivo and ex vivo diagnosis and surgical settings. Conclusions Compact and ultracompact spectral imagers are the future of spectral imaging systems. Researchers in the bioimaging fields are building systems that are low-cost, fast in acquisition time, and mobile enough to be handheld.
Collapse
Affiliation(s)
- Minh H. Tran
- University of Texas at Dallas, Department of Bioengineering, Richardson, Texas, United States
| | - Baowei Fei
- University of Texas at Dallas, Department of Bioengineering, Richardson, Texas, United States
- University of Texas Southwestern Medical Center, Department of Radiology, Dallas, Texas, United States
- University of Texas at Dallas, Center for Imaging and Surgical Innovation, Richardson, Texas, United States
- Address all correspondence to Baowei Fei,
| |
Collapse
|
33
|
Ellebrecht DB. Hyperspectral imaging enables the differentiation of differentially inflated and perfused pulmonary tissue: a proof-of-concept study in pulmonary lobectomies for intersegmental plane mapping. BIOMED ENG-BIOMED TE 2023:bmt-2022-0389. [PMID: 36932645 DOI: 10.1515/bmt-2022-0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
OBJECTIVES The identification of the intersegmental plane is a major interoperative challenges during pulmonary segmentectomies. The objective of this pilot study is to test the feasibility of lung perfusion assessment by Hyperspectral Imaging for identification of the intersegmental plane. METHODS A pilot study (clinicaltrials.org: NCT04784884) was conducted in patients with lung cancer. Measuring tissue oxygenation (StO2; upper tissue perfusion), organ hemoglobin index (OHI), near-infrared index (NIR; deeper tissue perfusion) and tissue water index (TWI), the Hyperspectral Imaging measurements were carried out in inflated (Pvent) and deflated pulmonary lobes (PnV) as well as in deflated pulmonary lobes with divided circulation (PnVC) before dissection of the lobar bronchus. RESULTS A total of 341 measuring points were evaluated during pulmonary lobectomies. Pulmonary lobes showed a reduced StO2 (Pvent: 84.56% ± 3.92 vs. PnV: 63.62% ± 11.62 vs. PnVC: 39.20% ± 23.57; p<0.05) and NIR-perfusion (Pvent: 50.55 ± 5.62 vs. PnV: 47.55 ± 3.38 vs. PnVC: 27.60 ± 9.33; p<0.05). There were no differences of OHI and TWI between the three groups. CONCLUSIONS This pilot study demonstrates that HSI enables differentiation between different ventilated and perfused pulmonary tissue as a precondition for HSI segment mapping.
Collapse
Affiliation(s)
- David B Ellebrecht
- Department of Thoracic Surgery, LungClinic Großhansdorf, Großhansdorf, Germany
| |
Collapse
|
34
|
In Vitro Antibody Quantification with Hyperspectral Imaging in a Large Field of View for Clinical Applications. Bioengineering (Basel) 2023; 10:bioengineering10030370. [PMID: 36978761 PMCID: PMC10045535 DOI: 10.3390/bioengineering10030370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Hyperspectral imaging (HSI) is a non-invasive, contrast-free optical-based tool that has recently been applied in medical and basic research fields. The opportunity to use HSI to identify exogenous tumor markers in a large field of view (LFOV) could increase precision in oncological diagnosis and surgical treatment. In this study, the anti-high mobility group B1 (HMGB1) labeled with Alexa fluorophore (647 nm) was used as the target molecule. This is the proof-of-concept of HSI’s ability to quantify antibodies via an in vitro setting. A first test was performed to understand whether the relative absorbance provided by the HSI camera was dependent on volume at a 1:1 concentration. A serial dilution of 1:1, 10, 100, 1000, and 10,000 with phosphatase-buffered saline (PBS) was then used to test the sensitivity of the camera at the minimum and maximum volumes. For the analysis, images at 640 nm were extracted from the hypercubes according to peak signals matching the specificities of the antibody manufacturer. The results showed a positive correlation between relative absorbance and volume (r = 0.9709, p = 0.0013). The correlation between concentration and relative absorbance at min (1 µL) and max (20 µL) volume showed r = 0.9925, p < 0.0001, and r = 0.9992, p < 0.0001, respectively. These results demonstrate the HSI potential in quantifying HMGB1, hence deserving further studies in ex vivo and in vivo settings.
Collapse
|
35
|
Ayala L, Adler TJ, Seidlitz S, Wirkert S, Engels C, Seitel A, Sellner J, Aksenov A, Bodenbach M, Bader P, Baron S, Vemuri A, Wiesenfarth M, Schreck N, Mindroc D, Tizabi M, Pirmann S, Everitt B, Kopp-Schneider A, Teber D, Maier-Hein L. Spectral imaging enables contrast agent-free real-time ischemia monitoring in laparoscopic surgery. SCIENCE ADVANCES 2023; 9:eadd6778. [PMID: 36897951 PMCID: PMC10005169 DOI: 10.1126/sciadv.add6778] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Laparoscopic surgery has evolved as a key technique for cancer diagnosis and therapy. While characterization of the tissue perfusion is crucial in various procedures, such as partial nephrectomy, doing so by means of visual inspection remains highly challenging. We developed a laparoscopic real-time multispectral imaging system featuring a compact and lightweight multispectral camera and the possibility to complement the conventional surgical view of the patient with functional information at a video rate of 25 Hz. To enable contrast agent-free ischemia monitoring during laparoscopic partial nephrectomy, we phrase the problem of ischemia detection as an out-of-distribution detection problem that does not rely on data from any other patient and uses an ensemble of invertible neural networks at its core. An in-human trial demonstrates the feasibility of our approach and highlights the potential of spectral imaging combined with advanced deep learning-based analysis tools for fast, efficient, reliable, and safe functional laparoscopic imaging.
Collapse
Affiliation(s)
- Leonardo Ayala
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Tim J. Adler
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
| | - Silvia Seidlitz
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
- Helmholtz Information and Data Science School for Health, Karlsruhe/Heidelberg, Germany
| | - Sebastian Wirkert
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Alexander Seitel
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Sellner
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
- Helmholtz Information and Data Science School for Health, Karlsruhe/Heidelberg, Germany
| | | | | | - Pia Bader
- Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | | | - Anant Vemuri
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manuel Wiesenfarth
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nicholas Schreck
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Diana Mindroc
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Minu Tizabi
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Pirmann
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Brittaney Everitt
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Dogu Teber
- Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | - Lena Maier-Hein
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
- Helmholtz Information and Data Science School for Health, Karlsruhe/Heidelberg, Germany
| |
Collapse
|
36
|
Zimmermann A, Köhler H, Chalopin C, Jansen-Winkeln B, Nowotny R, Schönherr T, Mehdorn M, Uttinger KL, Thieme R, Gockel I, Moulla Y. The role of intraoperative hyperspectral imaging (HSI) in colon interposition after esophagectomy. BMC Surg 2023; 23:47. [PMID: 36864396 PMCID: PMC9983190 DOI: 10.1186/s12893-023-01946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Colon conduit is an alternative approach to reconstructing the alimentary tract after esophagectomy. Hyperspectral imaging (HSI) has been demonstrated to be effective for evaluating the perfusion of gastric conduits, but not colon conduits. This is the first study to describe this new tool addressing image-guided surgery and supporting esophageal surgeons to select the optimal colon segment for the conduit and anastomotic site intraoperatively. PATIENTS AND METHODS Of 10 patients, eight who underwent reconstruction with a long-segment colon conduit after esophagectomy between 01/05/2018 and 01/04/2022 were included in this study. HSI was recorded at the root and tip of the colon conduit after clamping the middle colic vessels, allowing us to evaluate the perfusion and appropriate part of the colon segment. RESULTS Anastomotic leak (AL) was detected in only one (12.5%) of all the enrolled patients (n = 8). None of the patients developed conduit necrosis. Only one patient required re-anastomosis on postoperative day 4. No patient needed conduit removal, esophageal diversion, or stent placement. There was a change in the anastomosis site to proximal in two patients intraoperatively. There was no need to change the side of colon conduit intraoperatively in any patient. CONCLUSION HSI is a promising and novel intraoperative imaging tool to objectively assess the perfusion of the colon conduit. It helps the surgeon to define the best perfused anastomosis site and the side of colon conduit in this type of operation.
Collapse
Affiliation(s)
- Anne Zimmermann
- grid.411339.d0000 0000 8517 9062Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstr. 20, D-04103 Leipzig, Germany
| | - Hannes Köhler
- grid.9647.c0000 0004 7669 9786Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Semmelweisstr. 14, D-04103 Leipzig, Germany
| | - Claire Chalopin
- grid.9647.c0000 0004 7669 9786Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Semmelweisstr. 14, D-04103 Leipzig, Germany
| | - Boris Jansen-Winkeln
- grid.459389.a0000 0004 0493 1099Department of General, Visceral, Thoracic and Vascular Surgery, St. Georg Hospital, Delitzscher Str. 141, D-04129 Leipzig, Germany
| | - Robert Nowotny
- grid.411339.d0000 0000 8517 9062Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstr. 20, D-04103 Leipzig, Germany
| | - Till Schönherr
- grid.411339.d0000 0000 8517 9062Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstr. 20, D-04103 Leipzig, Germany
| | - Matthias Mehdorn
- grid.411339.d0000 0000 8517 9062Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstr. 20, D-04103 Leipzig, Germany
| | - Konstantin Lukas Uttinger
- grid.411339.d0000 0000 8517 9062Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstr. 20, D-04103 Leipzig, Germany
| | - René Thieme
- grid.411339.d0000 0000 8517 9062Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstr. 20, D-04103 Leipzig, Germany
| | - Ines Gockel
- grid.411339.d0000 0000 8517 9062Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstr. 20, D-04103 Leipzig, Germany
| | - Yusef Moulla
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstr. 20, D-04103, Leipzig, Germany.
| |
Collapse
|
37
|
Liu YZ, Mehrotra S, Nwaiwu CA, Buharin VE, Oberlin J, Stolyarov R, Schwaitzberg SD, Kim PCW. Real-time quantification of intestinal perfusion and arterial versus venous occlusion using laser speckle contrast imaging in porcine model. Langenbecks Arch Surg 2023; 408:114. [PMID: 36859714 DOI: 10.1007/s00423-023-02845-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE Real-time intraoperative perfusion assessment may reduce anastomotic leaks. Laser speckle contrast imaging (LSCI) provides dye-free visualization of perfusion by capturing coherent laser light scatter from red blood cells and displays perfusion as a colormap. Herein, we report a novel method to precisely quantify intestinal perfusion using LSCI. METHODS ActivSight™ is an FDA-cleared multi-modal visualization system that can detect and display perfusion via both indocyanine green imaging (ICG) and LSCI in minimally invasive surgery. An experimental prototype LSCI perfusion quantification algorithm was evaluated in porcine models. Porcine small bowel was selectively devascularized to create regions of perfused/watershed/ischemic bowel, and progressive aortic inflow/portal vein outflow clamping was performed to study arterial vs. venous ischemia. Continuous arterial pressure was monitored via femoral line. RESULTS LSCI perfusion colormaps and quantification distinguished between perfused, watershed, and ischemic bowel in all vascular control settings: no vascular occlusion (p < 0.001), aortic occlusion (p < 0.001), and portal venous occlusion (p < 0.001). LSCI quantification demonstrated similar levels of ischemia induced both by states of arterial inflow and venous outflow occlusion. LSCI-quantified perfusion values correlated positively with higher mean arterial pressure and with increasing distance from ischemic bowel. CONCLUSION LSCI relative perfusion quantification may provide more objective real-time assessment of intestinal perfusion compared to conventional naked eye assessment by quantifying currently subjective gradients of bowel ischemia and identifying both arterial/venous etiologies of ischemia.
Collapse
Affiliation(s)
- Yao Z Liu
- Department of Surgery, Brown University, Providence, RI, USA
- Activ Surgical, 30 Thomson Pl, 2nd Floor, Boston, MA, 02210, USA
| | - Saloni Mehrotra
- Activ Surgical, 30 Thomson Pl, 2nd Floor, Boston, MA, 02210, USA
- Department of Surgery, University of Buffalo, Buffalo, NY, USA
| | - Chibueze A Nwaiwu
- Department of Surgery, Brown University, Providence, RI, USA
- Activ Surgical, 30 Thomson Pl, 2nd Floor, Boston, MA, 02210, USA
| | | | - John Oberlin
- Activ Surgical, 30 Thomson Pl, 2nd Floor, Boston, MA, 02210, USA
| | - Roman Stolyarov
- Activ Surgical, 30 Thomson Pl, 2nd Floor, Boston, MA, 02210, USA
| | | | - Peter C W Kim
- Department of Surgery, Brown University, Providence, RI, USA.
- Activ Surgical, 30 Thomson Pl, 2nd Floor, Boston, MA, 02210, USA.
| |
Collapse
|
38
|
Davydov R, Zaitceva A, Davydov V, Isakova D, Mazing M. New Methodology of Human Health Express Diagnostics Based on Pulse Wave Measurements and Occlusion Test. J Pers Med 2023; 13:jpm13030443. [PMID: 36983623 PMCID: PMC10052938 DOI: 10.3390/jpm13030443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Nowadays, with the increase in the rhythm of life, the relevance of using express diagnostics methods for human health state estimation has significantly increased. We present a new express diagnostics method based on non-invasive measurements (the pulse wave shape, heart rate, blood pressure, and oxygen saturation of blood vessels and tissues). A feature of these measurements is that they can be carried out both in the hospital and at home. The new compact and portable optical hardware–software complex has been developed to measure tissue oxygen saturation. This complex makes it possible to reduce the measurement time from 60 min to 7–8 min, which reduces the likelihood of artifacts in the measurement process and increases its reliability. A new technique has been developed to carry out these measurements. A new optical sensor based on a line of charge-coupled devices has been developed to register a pulse wave in the far peripheral zone. The developed new technique for processing the pulse waveform and data on the oxygen saturation of hemoglobin in the blood and tissues allows a person to obtain additional information about their state of health independently. It will help to make conclusions about taking the necessary measures. This additional information allows the attending physician to provide more effective control over the course of treatment of the patient at any time since the methods of express diagnostics proposed by us have no restrictions on the number of applications. The functional state of more than 300 patients was studied. The results of various measurements are presented.
Collapse
Affiliation(s)
- Roman Davydov
- Institute of Physics and Mechanics, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Correspondence:
| | - Anna Zaitceva
- Institute for Analytical Instrumentation of the Russian Academy of Sciences, 190103 St. Petersburg, Russia
- Institute of Biomedical Systems and Biotechnology, Peter the Great, St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Vadim Davydov
- Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Department of Photonics and Communication Lines, The Bonch-Bruevich Saint Petersburg State University of Telecommunication, 193232 St. Petersburg, Russia
| | - Daria Isakova
- Department of Photonics and Communication Lines, The Bonch-Bruevich Saint Petersburg State University of Telecommunication, 193232 St. Petersburg, Russia
| | - Maria Mazing
- Institute for Analytical Instrumentation of the Russian Academy of Sciences, 190103 St. Petersburg, Russia
- Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
39
|
Ellebrecht DB, Kugler C. Intraoperative Determination of Bronchus Stump and Anastomosis Perfusion with Hyperspectral Imaging. Surg Innov 2023:15533506231157165. [PMID: 36802983 DOI: 10.1177/15533506231157165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
BACKGROUND The intraoperative evaluation of bronchus perfusion is limited. Hyperspectral Imaging (HSI) is a newly established intraoperative imaging technique that enables a non-invasive, real-time perfusion analysis. Therefore, the purpose of this study was to determine the intraoperative perfusion of bronchus stump and anastomosis during pulmonary resections with HSI. METHODS In this prospective, IDEAL Stage 2a study (Clinicaltrials.gov: NCT04784884) HSI measurements were carried out before bronchial dissection and after bronchial stump formation or bronchial anastomosis, respectively. Tissue oxygenation (StO2; upper tissue perfusion), organ hemoglobin index (OHI), near-infrared index (NIR; deeper tissue perfusion) and tissue water index (TWI) were calculated. RESULTS Bronchus stumps showed a reduced NIR (77.82 ± 10.27 vs 68.01 ± 8.95; P = 0,02158) and OHI (48.60 ± 1.39 vs 38.15 ± 9.74; P = <.0001), although the perfusion of the upper tissue layers was equivalent before and after resection (67.42% ± 12.53 vs 65.91% ± 10.40). In the sleeve resection group, we found both a significant decrease in StO 2 and NIR between central bronchus and anastomosis region (StO2: 65.09% ± 12.57 vs 49.45 ± 9.94; P = .044; NIR: 83.73 ± 10.92 vs 58.62 ± 3.01; P = .0063). Additionally, NIR was decreased in the re-anastomosed bronchus compared to central bronchus region (83.73 ± 10.92 vs 55.15 ± 17.56; P = .0029). CONCLUSIONS Although both bronchus stumps and anastomosis show an intraoperative reduction of tissue perfusion, there is no difference of tissue hemoglobin level in bronchus anastomosis.
Collapse
Affiliation(s)
- David B Ellebrecht
- Department of Surgery, 9213LungClinic Großhansdorf, Großhansdorf, Germany
| | - Christian Kugler
- Department of Surgery, 9213LungClinic Großhansdorf, Großhansdorf, Germany
| |
Collapse
|
40
|
Dietrich M, Antonovici A, Hölle T, Nusshag C, Kapp AC, Studier-Fischer A, Arif R, Nickel F, Weigand MA, Frey N, Lichtenstern C, Leuschner F, Fischer D. Microcirculatory tissue oxygenation correlates with kidney function after transcatheter aortic valve implantation-Results from a prospective observational study. Front Cardiovasc Med 2023; 10:1108256. [PMID: 36865886 PMCID: PMC9971913 DOI: 10.3389/fcvm.2023.1108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/20/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Kidney dysfunction is common in patients with aortic stenosis (AS) and correction of the aortic valve by transcatheter aortic valve implantation (TAVI) often affects kidney function. This may be due to microcirculatory changes. Methods We evaluated skin microcirculation with a hyperspectral imaging (HSI) system, and compared tissue oxygenation (StO2), near-infrared perfusion index (NIR), tissue hemoglobin index (THI) and tissue water index (TWI) in 40 patients undergoing TAVI versus 20 control patients. HSI parameters were measured before TAVI (t1), directly after TAVI (t2), and on postinterventional day 3 (t3). The primary outcome was the correlation of tissue oxygenation (StO2) to the creatinine level after TAVI. Results We performed 116 HSI image recordings in patients undergoing TAVI for the treatment of severe aortic stenosis and 20 HSI image recordings in control patients. Patients with AS had a lower THI at the palm (p = 0.034) and a higher TWI at the fingertips (p = 0.003) in comparison to control patients. TAVI led to an increase of TWI, but had no uniform enduring effect on StO2 and THI. Tissue oxygenation StO2 at both measurement sites correlated negatively with creatinine levels after TAVI at t2 (palm: ρ = -0.415; p = 0.009; fingertip: ρ = -0.519; p < 0.001) and t3 (palm: ρ = -0.427; p = 0.008; fingertip: ρ = -0.398; p = 0.013). Patients with higher THI at t3 reported higher physical capacity and general health scores 120 days after TAVI. Conclusion HSI is a promising technique for periinterventional monitoring of tissue oxygenation and microcirculatory perfusion quality, which are related to kidney function, physical capacity, and clinical outcomes after TAVI. Clinical trial registration https://drks.de/search/de/trial, identifier DRKS00024765.
Collapse
Affiliation(s)
- Maximilian Dietrich
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany,*Correspondence: Maximilian Dietrich, ; orcid.org/0000-0003-0960-038X
| | - Ana Antonovici
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Tobias Hölle
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Nusshag
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anne-Christine Kapp
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander Studier-Fischer
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Rawa Arif
- Institute of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Nickel
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Norbert Frey
- Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Florian Leuschner
- Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Dania Fischer
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
41
|
In vivo evaluation of a hyperspectral imaging system for minimally invasive surgery (HSI-MIS). Surg Endosc 2023; 37:3691-3700. [PMID: 36645484 PMCID: PMC10156625 DOI: 10.1007/s00464-023-09874-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023]
Abstract
BACKGROUND Hyperspectral Imaging (HSI) is a reliable and safe imaging method for taking intraoperative perfusion measurements. This is the first study translating intraoperative HSI to an in vivo laparoscopic setting using a CE-certified HSI-system for minimally invasive surgery (HSI-MIS). We aim to compare it to an established HSI-system for open surgery (HSI-Open). METHODS Intraoperative HSI was done using the HSI-MIS and HSI-Open at the Region of Interest (ROI). 19 patients undergoing gastrointestinal resections were analyzed in this study. The HSI-MIS-acquired images were aligned with those from the HSI-Open, and spectra and parameter images were compared pixel-wise. We calculated the Mean Absolute Error (MAE) for Tissue Oxygen Saturation (StO2), Near-Infrared Perfusion Index (NIR-PI), Tissue Water Index (TWI), and Organ Hemoglobin Index (OHI), as well as the Root Mean Squared Error (RMSE) over the whole spectrum. Our analysis of parameters was optimized using partial least squares (PLS) regression. Two experienced surgeons carried out an additional color-change analysis, comparing the ROI images and deciding whether they provided the same (acceptable) or different visual information (rejected). RESULTS HSI and subsequent image registration was possible in 19 patients. MAE results for the original calculation were StO2 orig. 17.2% (± 7.7%), NIR-PIorig. 16.0 (± 9.5), TWIorig. 18.1 (± 7.9), OHIorig. 14.4 (± 4.5). For the PLS calculation, they were StO2 PLS 12.6% (± 5.2%), NIR-PIPLS 10.3 (± 6.0), TWIPLS 10.6 (± 5.1), and OHIPLS 11.6 (± 3.0). The RMSE between both systems was 0.14 (± 0.06). In the color-change analysis; both surgeons accepted more images generated using the PLS method. CONCLUSION Intraoperative HSI-MIS is a new technology and holds great potential for future applications in surgery. Parameter deviations are attributable to technical differences and can be reduced by applying improved calculation methods. This study is an important step toward the clinical implementation of HSI for minimally invasive surgery.
Collapse
|
42
|
Spectral Similarity Measures for In Vivo Human Tissue Discrimination Based on Hyperspectral Imaging. Diagnostics (Basel) 2023; 13:diagnostics13020195. [PMID: 36673005 PMCID: PMC9857871 DOI: 10.3390/diagnostics13020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
PROBLEM Similarity measures are widely used as an approved method for spectral discrimination or identification with their applications in different areas of scientific research. Even though a range of works have been presented, only a few showed slightly promising results for human tissue, and these were mostly focused on pathological and non-pathological tissue classification. METHODS In this work, several spectral similarity measures on hyperspectral (HS) images of in vivo human tissue were evaluated for tissue discrimination purposes. Moreover, we introduced two new hybrid spectral measures, called SID-JM-TAN(SAM) and SID-JM-TAN(SCA). We analyzed spectral signatures obtained from 13 different human tissue types and two different materials (gauze, instruments), collected from HS images of 100 patients during surgeries. RESULTS The quantitative results showed the reliable performance of the different similarity measures and the proposed hybrid measures for tissue discrimination purposes. The latter produced higher discrimination values, up to 6.7 times more than the classical spectral similarity measures. Moreover, an application of the similarity measures was presented to support the annotations of the HS images. We showed that the automatic checking of tissue-annotated thyroid and colon tissues was successful in 73% and 60% of the total spectra, respectively. The hybrid measures showed the highest performance. Furthermore, the automatic labeling of wrongly annotated tissues was similar for all measures, with an accuracy of up to 90%. CONCLUSION In future work, the proposed spectral similarity measures will be integrated with tools to support physicians in annotations and tissue labeling of HS images.
Collapse
|
43
|
Späth M, Romboy A, Nzenwata I, Rohde M, Ni D, Ackermann L, Stelzle F, Hohmann M, Klämpfl F. Experimental Validation of Shifted Position-Diffuse Reflectance Imaging (SP-DRI) on Optical Phantoms. SENSORS (BASEL, SWITZERLAND) 2022; 22:9880. [PMID: 36560250 PMCID: PMC9783365 DOI: 10.3390/s22249880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Numerous diseases such as hemorrhage, sepsis or cardiogenic shock induce a heterogeneous perfusion of the capillaries. To detect such alterations in the human blood flow pattern, diagnostic devices must provide an appropriately high spatial resolution. Shifted position-diffuse reflectance imaging (SP-DRI) has the potential to do so; it is an all-optical diagnostic technique. So far, SP-DRI has mainly been developed using Monte Carlo simulations. The present study is therefore validating this algorithm experimentally on realistic optical phantoms with thread structures down to 10 μm in diameter; a SP-DRI sensor prototype was developed and realized by means of additive manufacturing. SP-DRI turned out to be functional within this experimental framework. The position of the structures within the optical phantoms become clearly visible using SP-DRI, and the structure thickness is reflected as modulation in the SP-DRI signal amplitude; this performed well for a shift along the x axis as well as along the y axis. Moreover, SP-DRI successfully masked the pronounced influence of the illumination cone on the data. The algorithm showed significantly superior to a mere raw data inspection. Within the scope of the study, the constructive design of the SP-DRI sensor prototype is discussed and potential for improvement is explored.
Collapse
Affiliation(s)
- Moritz Späth
- Institute of Photonic Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen, Germany
| | - Alexander Romboy
- Institute of Photonic Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Ijeoma Nzenwata
- Institute of Photonic Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Maximilian Rohde
- Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen, Germany
- Department of Oral and Maxillofacial Surgery, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Dongqin Ni
- Institute of Photonic Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen, Germany
| | - Lisa Ackermann
- Institute of Photonic Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen, Germany
| | - Florian Stelzle
- Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen, Germany
- Department of Oral and Maxillofacial Surgery, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Martin Hohmann
- Institute of Photonic Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen, Germany
| | - Florian Klämpfl
- Institute of Photonic Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen, Germany
| |
Collapse
|
44
|
Cui R, Yu H, Xu T, Xing X, Cao X, Yan K, Chen J. Deep Learning in Medical Hyperspectral Images: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22249790. [PMID: 36560157 PMCID: PMC9784550 DOI: 10.3390/s22249790] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 06/13/2023]
Abstract
With the continuous progress of development, deep learning has made good progress in the analysis and recognition of images, which has also triggered some researchers to explore the area of combining deep learning with hyperspectral medical images and achieve some progress. This paper introduces the principles and techniques of hyperspectral imaging systems, summarizes the common medical hyperspectral imaging systems, and summarizes the progress of some emerging spectral imaging systems through analyzing the literature. In particular, this article introduces the more frequently used medical hyperspectral images and the pre-processing techniques of the spectra, and in other sections, it discusses the main developments of medical hyperspectral combined with deep learning for disease diagnosis. On the basis of the previous review, tne limited factors in the study on the application of deep learning to hyperspectral medical images are outlined, promising research directions are summarized, and the future research prospects are provided for subsequent scholars.
Collapse
Affiliation(s)
- Rong Cui
- College of Electronic and Information Engineering, Changchun University, Changchun 130022, China
| | - He Yu
- College of Electronic and Information Engineering, Changchun University, Changchun 130022, China
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, Changchun University, Changchun 130022, China
| | - Tingfa Xu
- Image Engineering & Video Technology Lab, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Xiaoxue Xing
- College of Electronic and Information Engineering, Changchun University, Changchun 130022, China
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, Changchun University, Changchun 130022, China
| | - Xiaorui Cao
- College of Electronic and Information Engineering, Changchun University, Changchun 130022, China
| | - Kang Yan
- College of Electronic and Information Engineering, Changchun University, Changchun 130022, China
| | - Jiexi Chen
- College of Electronic and Information Engineering, Changchun University, Changchun 130022, China
| |
Collapse
|
45
|
Hyperspectral Imaging for Viability Assessment of Human Liver Allografts During Normothermic Machine Perfusion. Transplant Direct 2022; 8:e1420. [PMID: 36406899 PMCID: PMC9671746 DOI: 10.1097/txd.0000000000001420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Normothermic machine perfusion (NMP) is nowadays frequently utilized in liver transplantation. Despite commonly accepted viability assessment criteria, such as perfusate lactate and perfusate pH, there is a lack of predictive organ evaluation strategies to ensure graft viability. Hyperspectral imaging (HSI)-as an optical imaging modality increasingly applied in the biomedical field-might provide additional useful data regarding allograft viability and performance of liver grafts during NMP. METHODS Twenty-five deceased donor liver allografts were included in the study. During NMP, graft viability was assessed conventionally and by means of HSI. Images of liver parenchyma were acquired at 1, 2, and 4 h of NMP, and subsequently analyzed using a specialized HSI acquisition software to compute oxygen saturation, tissue hemoglobin index, near-infrared perfusion index, and tissue water index. To analyze the association between HSI parameters and perfusate lactate as well as perfusate pH, we performed simple linear regression analysis. RESULTS Perfusate lactate at 1, 2, and 4 h NMP was 1.5 [0.3-8.1], 0.9 [0.3-2.8], and 0.9 [0.1-2.2] mmol/L. Perfusate pH at 1, 2, and 4 h NMP was 7.329 [7.013-7.510], 7.318 [7.081-7.472], and 7.265 [6.967-7.462], respectively. Oxygen saturation predicted perfusate lactate at 1 and 2 h NMP (R2 = 0.1577, P = 0.0493; R2 = 0.1831, P = 0.0329; respectively). Tissue hemoglobin index predicted perfusate lactate at 1, 2, and 4 h NMP (R2 = 0.1916, P = 0.0286; R2 = 0.2900, P = 0.0055; R2 = 0.2453, P = 0.0139; respectively). CONCLUSIONS HSI may serve as a noninvasive tool for viability assessment during NMP. Further evaluation and validation of HSI parameters are warranted in larger sample sizes.
Collapse
|
46
|
Felli E, Cinelli L, Bannone E, Giannone F, Muttillo EM, Barberio M, Keller DS, Rodríguez-Luna MR, Okamoto N, Collins T, Hostettler A, Schuster C, Mutter D, Pessaux P, Marescaux J, Gioux S, Felli E, Diana M. Hyperspectral Imaging in Major Hepatectomies: Preliminary Results from the Ex-Machyna Trial. Cancers (Basel) 2022; 14:cancers14225591. [PMID: 36428685 PMCID: PMC9688371 DOI: 10.3390/cancers14225591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/07/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
Abstract
Ischemia-reperfusion injury during major hepatic resections is associated with high rates of post-operative complications and liver failure. Real-time intra-operative detection of liver dysfunction could provide great insight into clinical outcomes. In the present study, we demonstrate the intra-operative application of a novel optical technology, hyperspectral imaging (HSI), to predict short-term post-operative outcomes after major hepatectomy. We considered fifteen consecutive patients undergoing major hepatic resection for malignant liver lesions from January 2020 to June 2021. HSI measures included tissue water index (TWI), organ hemoglobin index (OHI), tissue oxygenation (StO2%), and near infrared (NIR). Pre-operative, intra-operative, and post-operative serum and clinical outcomes were collected. NIR values were higher in unhealthy liver tissue (p = 0.003). StO2% negatively correlated with post-operative serum ALT values (r = -0.602), while ΔStO2% positively correlated with ALP (r = 0.594). TWI significantly correlated with post-operative reintervention and OHI with post-operative sepsis and liver failure. In conclusion, the HSI imaging system is accurate and precise in translating from pre-clinical to human studies in this first clinical trial. HSI indices are related to serum and outcome metrics. Further experimental and clinical studies are necessary to determine clinical value of this technology.
Collapse
Affiliation(s)
- Emanuele Felli
- Digestive and Endocrine Surgery, Nouvel Hopital Civil, University of Strasbourg, 67000 Strasbourg, France
- University Hospital Institute (IHU), Institut de Chirurgie Guidée par l’image, University of Strasbourg, 67000 Strasbourg, France
- Research Institute against Digestive Cancer (IRCAD), 67000 Strasbourg, France
- Institut of Viral and Liver Disease, Inserm U1110, University of Strasbourg, 67000 Strasbourg, France
| | - Lorenzo Cinelli
- Research Institute against Digestive Cancer (IRCAD), 67000 Strasbourg, France
- Department of Gastrointestinal Surgery, San Raffaele Hospital IRCCS, 20132 Milan, Italy
| | - Elisa Bannone
- Research Institute against Digestive Cancer (IRCAD), 67000 Strasbourg, France
- Department of Surgery, Istituto Fondazione Poliambulanza, 25124 Brescia, Italy
- Department of Pancreatic Surgery, Verona University, 37134 Verona, Italy
| | - Fabio Giannone
- Digestive and Endocrine Surgery, Nouvel Hopital Civil, University of Strasbourg, 67000 Strasbourg, France
- University Hospital Institute (IHU), Institut de Chirurgie Guidée par l’image, University of Strasbourg, 67000 Strasbourg, France
- Research Institute against Digestive Cancer (IRCAD), 67000 Strasbourg, France
- Institut of Viral and Liver Disease, Inserm U1110, University of Strasbourg, 67000 Strasbourg, France
| | - Edoardo Maria Muttillo
- Dipartimento di Scienze Medico Chirurgiche e Medicina Traslazionale, Sapienza Università di Roma, 00189 Roma, Italy
| | - Manuel Barberio
- Research Institute against Digestive Cancer (IRCAD), 67000 Strasbourg, France
- Ospedale Cardinale G. Panico, General Surgery Department, 73039 Tricase, Italy
| | | | - María Rita Rodríguez-Luna
- Research Institute against Digestive Cancer (IRCAD), 67000 Strasbourg, France
- ICube Laboratory, Photonics Instrumentation for Health, 67400 Strasbourg, France
| | - Nariaki Okamoto
- Research Institute against Digestive Cancer (IRCAD), 67000 Strasbourg, France
| | - Toby Collins
- Research Institute against Digestive Cancer (IRCAD), 67000 Strasbourg, France
| | | | - Catherine Schuster
- Institut of Viral and Liver Disease, Inserm U1110, University of Strasbourg, 67000 Strasbourg, France
| | - Didier Mutter
- Digestive and Endocrine Surgery, Nouvel Hopital Civil, University of Strasbourg, 67000 Strasbourg, France
- University Hospital Institute (IHU), Institut de Chirurgie Guidée par l’image, University of Strasbourg, 67000 Strasbourg, France
| | - Patrick Pessaux
- Digestive and Endocrine Surgery, Nouvel Hopital Civil, University of Strasbourg, 67000 Strasbourg, France
- Research Institute against Digestive Cancer (IRCAD), 67000 Strasbourg, France
- Institut of Viral and Liver Disease, Inserm U1110, University of Strasbourg, 67000 Strasbourg, France
| | - Jacques Marescaux
- Research Institute against Digestive Cancer (IRCAD), 67000 Strasbourg, France
| | - Sylvain Gioux
- ICube Laboratory, Photonics Instrumentation for Health, 67400 Strasbourg, France
| | - Eric Felli
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Michele Diana
- Digestive and Endocrine Surgery, Nouvel Hopital Civil, University of Strasbourg, 67000 Strasbourg, France
- Research Institute against Digestive Cancer (IRCAD), 67000 Strasbourg, France
- ICube Laboratory, Photonics Instrumentation for Health, 67400 Strasbourg, France
- Correspondence:
| |
Collapse
|
47
|
Mulica M, Horch RE, Arkudas A, Cai A, Müller-Seubert W, Hauck T, Ludolph I. Does indocyanine green fluorescence angiography impact the intraoperative choice of procedure in free vascularized medial femoral condyle grafting for scaphoid nonunions? Front Surg 2022; 9:962450. [PMID: 36117816 PMCID: PMC9478374 DOI: 10.3389/fsurg.2022.962450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background Free vascularized medial femoral condyle (MFC) bone grafts can lead to increased vascularity of the proximal pole and restore scaphoid architecture in scaphoid nonunions. The intraoperative perfusion assessment of the bone graft is challenging because the conventional clinical examination is difficult. Indocyanine green (ICG) angiography has previously been shown to provide a real-time intraoperative evaluation of soft tissue perfusion in reconstructive surgery. The present study investigated the utility of ICG angiography in patients treated with a free medial femoral condyle graft for scaphoid nonunions. Methods We performed a retrospective analysis of patients with scaphoid nonunions, in which ICG angiography was used intraoperatively for perfusion assessment. The medical records, radiographs, intraoperative imaging, and operative reports of all patients were reviewed. Intraoperative ICG dye was administered intravenously, and laser angiography was performed to assess bone perfusion. The scaphoid union was examined using postoperative CT scans. Results Two patients had documented osteonecrosis of the proximal pole at the time of surgery. Four patients received a nonvascularized prior bone graft procedure, and a prior spongiosa graft procedure was performed in one patient. The mean time from injury to the MFC bone graft surgery was 52.7 months, and the mean time from prior failed surgery was 10.4 months. Perfusion of the vascular pedicle of the MFC and the periosteum could be detected in all patients. In two patients, even perfusion of the cancellous bone could be demonstrated by ICG angiography. Following transplantation of the bone graft, patency of the vascular anastomosis and perfusion of the periost were confirmed by ICG angiography in the assessed cases. No additional surgery regarding a salvage procedure for a scaphoid nonunion advanced collapse was necessary for the further course. Conclusion ICG-angiography has shown to be a promising tool in the treatment of scaphoid nonunion with medial femoral condyle bone grafts. It enables intraoperative decision making by assessment of the microvascular blood supply of the periosteum and the vascular pedicle of the MFC bone graft. Further studies need to evaluate the impact on union rates in a long-term follow-up.
Collapse
|
48
|
Schulz T, Marotz J, Seider S, Langer S, Leuschner S, Siemers F. Burn depth assessment using hyperspectral imaging in a prospective single center study. Burns 2022; 48:1112-1119. [PMID: 34702635 DOI: 10.1016/j.burns.2021.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/10/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The assessment of thermal burn depth remains challenging. Over the last decades, several optical systems were developed to determine burn depth. So far, only laser doppler imaging (LDI) has been shown to be reliable while others such as infrared thermography or spectrophotometric intracutaneous analysis have been less accurate. The aim of our study is to evaluate hyperspectral imaging (HSI) as a new optical device. METHODS Patients suffering thermal trauma treated in a burn unit in Germany between November 2019 and September 2020 were included. Inclusion criteria were age ≥18 years, 2nd or 3rd degree thermal burns, written informed consent and presentation within 24 h after injury. Clinical assessment and hyperspectral imaging were performed 24, 48 and 72 h after the injury. Patients in whom secondary wound closure was complete within 21 days (group A) were compared to patients in whom secondary wound closure took more than 21 days or where skin grafting was indicated (group B). Demographic data and the primary parameters generated by HSI were documented. A Mann Whitney-U test was performed to compare the groups. A p-value below 0.05 was considered to be statistically significant. The data generated using HSI were combined to create the HSI burn index (BI). Using a logistic regression and receiver operating characteristics curve (ROC) sensitivity and specificity of the BI were calculated. The trial was officially registered on DRKS (registration number: DRKS00022843). RESULTS Overall, 59 patients with burn wounds were eligible for inclusion. Ten patients were excluded because of a poor data quality. Group A comprised 36 patients with a mean age of 41.5 years and a mean burnt body surface area of 2.7%. In comparison, 13 patients were allocated to group B because of the need for a skin graft (n = 10) or protracted secondary wound closure lasting more than 21 days. The mean age of these patients was 46.8 years. They had a mean affected body surface area of 4.0%. 24, 48, and 72 h after trauma the BI was 1.0 ± 0.28, 1.2 ± 0.29 and 1.55 ± 0.27 in group A and 0.78 ± 0.14, 1.05 ± 0.23 and 1.23 ± 0.27 in group B. At every time point significant differences were demonstrated between the groups. At 24 h, ROC analysis demonstrated BI threshold of 0.95 (sensitivity 0.61/specificity 1.0), on the second day of 1.17 (sensitivity 0.51/specificity 0.81) and on the third day of 1.27 (sensitivity 0.92/specificity 0.71). CONCLUSION Changes in microcirculation within the first 72 h after thermal trauma were reflected by an increasing BI in both groups. After 72 h, the BI is able to predict the need for a skin graft with a sensitivity of 92% and a specificity of 71%.
Collapse
Affiliation(s)
- Torsten Schulz
- Department of Orthopedic, Trauma and Plastic Surgery, Leipzig University Hospital, Germany.
| | - Jörg Marotz
- Department for Plastic- and Reconstructive Surgery, Burns Unit, BG Kliniken Bergmannstrost, Merseburger Straße 165, D-06120 Halle (Saale), Germany
| | - Sebastian Seider
- Medical Faculty of the Martin-Luther-Universität Halle-Wittenberg, Universitätsplatz 10, D-06108 Halle (Saale), Germany
| | - Stefan Langer
- Department for Orthopedics, Trauma- and Plastic Surgery-University Hospital Leipzig, Liebigstraße 20, D-04103 Leipzig, Germany
| | - Sebastian Leuschner
- Department for Plastic- and Reconstructive Surgery, Burns Unit, BG Kliniken Bergmannstrost, Merseburger Straße 165, D-06120 Halle (Saale), Germany
| | - Frank Siemers
- Department for Plastic- and Reconstructive Surgery, Burns Unit, BG Kliniken Bergmannstrost, Merseburger Straße 165, D-06120 Halle (Saale), Germany
| |
Collapse
|
49
|
Becker P, Blatt S, Pabst A, Heimes D, Al-Nawas B, Kämmerer PW, Thiem DGE. Comparison of Hyperspectral Imaging and Microvascular Doppler for Perfusion Monitoring of Free Flaps in an In Vivo Rodent Model. J Clin Med 2022; 11:jcm11144134. [PMID: 35887901 PMCID: PMC9321983 DOI: 10.3390/jcm11144134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 01/27/2023] Open
Abstract
To reduce microvascular free flap failure (MFF), monitoring is crucial for the early detection of malperfusion and allows timely salvage. Therefore, the aim of this study was to evaluate hyperspectral imaging (HSI) in comparison to micro-Doppler sonography (MDS) to monitor MFF perfusion in an in vivo rodent model. Bilateral groin flaps were raised on 20 Sprague−Dawley rats. The femoral artery was transected on the trial side and re-anastomosed. Flaps and anastomoses were assessed before, during, and after the period of ischemia every ten minutes for overall 60 min using HSI and MDS. The contralateral sides’ flaps served as controls. Tissue-oxygenation saturation (StO2), near-infrared perfusion index (NPI), hemoglobin (THI), and water distribution (TWI) were assessed by HSI, while blood flow was assessed by MDS. HSI correlates with the MDS signal in the case of sufficient and completely interrupted perfusion. HSI was able to validly and reproducibly detect tissue perfusion status using StO2 and NPI. After 40 min, flap perfusion decreased due to the general aggravation of hemodynamic circulatory situation, which resulted in a significant drop of StO2 (p < 0.005) and NPI (p < 0.005), whereas the Doppler signal remained unchanged. In accordance, HSI might be suitable to detect MFF general complications in an early stage and further decrease MFF failure rates, whereas MDS may only be used for direct complications at the anastomose site.
Collapse
Affiliation(s)
- Philipp Becker
- Department of Oral and Maxillofacial Surgery, Federal Armed Forces Hospital, Rübenacherstr. 170, 56072 Koblenz, Germany;
- Department of Oral and Maxillofacial Surgery, University Medical Centre Mainz, 55131 Mainz, Germany; (S.B.); (D.H.); (B.A.-N.); (P.W.K.); (D.G.E.T.)
- Correspondence:
| | - Sebastian Blatt
- Department of Oral and Maxillofacial Surgery, University Medical Centre Mainz, 55131 Mainz, Germany; (S.B.); (D.H.); (B.A.-N.); (P.W.K.); (D.G.E.T.)
| | - Andreas Pabst
- Department of Oral and Maxillofacial Surgery, Federal Armed Forces Hospital, Rübenacherstr. 170, 56072 Koblenz, Germany;
- Department of Oral and Maxillofacial Surgery, University Medical Centre Mainz, 55131 Mainz, Germany; (S.B.); (D.H.); (B.A.-N.); (P.W.K.); (D.G.E.T.)
| | - Diana Heimes
- Department of Oral and Maxillofacial Surgery, University Medical Centre Mainz, 55131 Mainz, Germany; (S.B.); (D.H.); (B.A.-N.); (P.W.K.); (D.G.E.T.)
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery, University Medical Centre Mainz, 55131 Mainz, Germany; (S.B.); (D.H.); (B.A.-N.); (P.W.K.); (D.G.E.T.)
| | - Peer W. Kämmerer
- Department of Oral and Maxillofacial Surgery, University Medical Centre Mainz, 55131 Mainz, Germany; (S.B.); (D.H.); (B.A.-N.); (P.W.K.); (D.G.E.T.)
| | - Daniel G. E. Thiem
- Department of Oral and Maxillofacial Surgery, University Medical Centre Mainz, 55131 Mainz, Germany; (S.B.); (D.H.); (B.A.-N.); (P.W.K.); (D.G.E.T.)
| |
Collapse
|
50
|
Chalopin C, Nickel F, Pfahl A, Köhler H, Maktabi M, Thieme R, Sucher R, Jansen-Winkeln B, Studier-Fischer A, Seidlitz S, Maier-Hein L, Neumuth T, Melzer A, Müller-Stich BP, Gockel I. [Artificial intelligence and hyperspectral imaging for image-guided assistance in minimally invasive surgery]. CHIRURGIE (HEIDELBERG, GERMANY) 2022; 93:940-947. [PMID: 35798904 DOI: 10.1007/s00104-022-01677-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Intraoperative imaging assists surgeons during minimally invasive procedures. Hyperspectral imaging (HSI) is a noninvasive and noncontact optical technique with great diagnostic potential in medicine. The combination with artificial intelligence (AI) approaches to analyze HSI data is called intelligent HSI in this article. OBJECTIVE What are the medical applications and advantages of intelligent HSI for minimally invasive visceral surgery? MATERIAL AND METHODS Within various clinical studies HSI data from multiple in vivo tissue types and oncological resections were acquired using an HSI camera system. Different AI algorithms were evaluated for detection and discrimination of organs, risk structures and tumors. RESULTS In an experimental animal study 20 different organs could be differentiated with high precision (> 95%) using AI. In vivo, the parathyroid glands could be discriminated from surrounding tissue with an F1 score of 47% and sensitivity of 75%, and the bile duct with an F1 score of 79% and sensitivity of 90%. Furthermore, ex vivo tumor tissue could be successfully detected with an area under the receiver operating characteristic (ROC) curve (AUC) larger than 0.91. DISCUSSION This study demonstrates that intelligent HSI can automatically and accurately detect different tissue types. Despite great progress in the last decade intelligent HSI still has limitations. Thus, accurate AI algorithms that are easier to understand for the user and an extensive standardized and continuously growing database are needed. Further clinical studies should support the various medical applications and lead to the adoption of intelligent HSI in the clinical routine practice.
Collapse
Affiliation(s)
- Claire Chalopin
- Innovation Center Computer Assisted Surgery, Universität Leipzig, Semmelweisstr. 14, 04103, Leipzig, Deutschland.
| | - Felix Nickel
- Klinik für Allgemein‑, Viszeral- und Transplantationschirurgie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - Annekatrin Pfahl
- Innovation Center Computer Assisted Surgery, Universität Leipzig, Semmelweisstr. 14, 04103, Leipzig, Deutschland
| | - Hannes Köhler
- Innovation Center Computer Assisted Surgery, Universität Leipzig, Semmelweisstr. 14, 04103, Leipzig, Deutschland
| | - Marianne Maktabi
- Innovation Center Computer Assisted Surgery, Universität Leipzig, Semmelweisstr. 14, 04103, Leipzig, Deutschland
| | - René Thieme
- Klinik und Poliklinik für Viszeral‑, Transplantations‑, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - Robert Sucher
- Klinik und Poliklinik für Viszeral‑, Transplantations‑, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - Boris Jansen-Winkeln
- Klinik und Poliklinik für Viszeral‑, Transplantations‑, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig, Leipzig, Deutschland
- Abteilung für Allgemein‑, Viszeral- und Onkologische Chirurgie, Klinikum St. Georg Leipzig, Leipzig, Deutschland
| | - Alexander Studier-Fischer
- Klinik für Allgemein‑, Viszeral- und Transplantationschirurgie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - Silvia Seidlitz
- Division of Intelligent Medical Systems, Deutsches Krebsforschungszentrum, Heidelberg, Deutschland
| | - Lena Maier-Hein
- Division of Intelligent Medical Systems, Deutsches Krebsforschungszentrum, Heidelberg, Deutschland
| | - Thomas Neumuth
- Innovation Center Computer Assisted Surgery, Universität Leipzig, Semmelweisstr. 14, 04103, Leipzig, Deutschland
| | - Andreas Melzer
- Innovation Center Computer Assisted Surgery, Universität Leipzig, Semmelweisstr. 14, 04103, Leipzig, Deutschland
| | - Beat Peter Müller-Stich
- Klinik für Allgemein‑, Viszeral- und Transplantationschirurgie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - Ines Gockel
- Klinik und Poliklinik für Viszeral‑, Transplantations‑, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig, Leipzig, Deutschland
| |
Collapse
|