1
|
M AL, R R. Rehabilitation Based on BCI: An Innovative Enhancement for Sensorimotor Cortex Rhythms Systemization. Adv Biol (Weinh) 2024; 8:e2400004. [PMID: 38977410 DOI: 10.1002/adbi.202400004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/06/2024] [Indexed: 07/10/2024]
Abstract
The research proposes a novel strategy for categorizing electroencephalograms (EEG) in real-time brain-computer interfaces that have rehabilitation applications. The methodology utilizes Five Cross-Common Spatial Patterns (FCCSP) to develop a motor movement/imagery systemization model that extracts multi-domain characteristics with excellent performance. The goal is to eliminate the impact caused by EEG's nonstationarity. The article highlights the findings of a real-time technique that is incorporated into a comprehensive prediction system, and it offers an innovative method to boost accuracy in real-time Sensory-Motor cortex Rhythms (SMR). The accuracy increased from 57.14% using raw EEG to 85.71% after preprocessing, and from 58.08% to 97.94% in public domain SMR. The proposed Butterworth bandpass filter is optimized using the FCCSP to determine the ideal bandwidth that incorporates the whole EEG features in beta waves. The Hybrid Systemization of the Correlated Feature Removal classifier is then integrated with the FCCSP method to create improved predictive models. As a consequence, while applied to real-time and PhysioNet datasets, the outcome system achieved outstanding accuracy values of 85.71% and 97.94%, respectively. This demonstrates the robustness of the strategy to increase SMR prediction efficiency.
Collapse
Affiliation(s)
- Anna Latha M
- Vellore Institute of Technology, Chennai, Tamil Nadu, 600127, India
| | - Ramesh R
- Vellore Institute of Technology, Chennai, Tamil Nadu, 600127, India
| |
Collapse
|
2
|
Li T, Zhang D, Wang Y, Cheng S, Wang J, Zhang Y, Xie P, Chen X. Research on mental fatigue during long-term motor imagery: a pilot study. Sci Rep 2024; 14:18454. [PMID: 39117672 PMCID: PMC11310351 DOI: 10.1038/s41598-024-69013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Mental fatigue during long-term motor imagery (MI) may affect intention recognition in MI applications. However, the current research lacks the monitoring of mental fatigue during MI and the definition of robust biomarkers. The present study aims to reveal the effects of mental fatigue on motor imagery recognition at the brain region level and explore biomarkers of mental fatigue. To achieve this, we recruited 10 healthy participants and asked them to complete a long-term motor imagery task involving both right- and left-handed movements. During the experiment, we recorded 32-channel EEG data and carried out a fatigue questionnaire for each participant. As a result, we found that mental fatigue significantly decreased the subjects' motor imagery recognition rate during MI. Additionally the theta power of frontal, central, parietal, and occipital clusters significantly increased after the presence of mental fatigue. Furthermore, the phase synchronization between the central cluster and the frontal and occipital lobes was significantly weakened. To summarize, the theta bands of frontal, central, and parieto-occipital clusters may serve as powerful biomarkers for monitoring mental fatigue during motor imagery. Additionally, changes in functional connectivity between the central cluster and the prefrontal and occipital lobes during motor imagery could be investigated as potential biomarkers.
Collapse
Affiliation(s)
- Tianqing Li
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Dong Zhang
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Ying Wang
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Shengcui Cheng
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Juan Wang
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Yuanyuan Zhang
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ping Xie
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei, China.
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei, China.
| | - Xiaoling Chen
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei, China.
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei, China.
| |
Collapse
|
3
|
Chaibi S, Mahjoub C, Ayadi W, Kachouri A. Epileptic EEG patterns recognition through machine learning techniques and relevant time-frequency features. BIOMED ENG-BIOMED TE 2024; 69:111-123. [PMID: 37899292 DOI: 10.1515/bmt-2023-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/09/2023] [Indexed: 10/31/2023]
Abstract
OBJECTIVES The present study is designed to explore the process of epileptic patterns' automatic detection, specifically, epileptic spikes and high-frequency oscillations (HFOs), via a selection of machine learning (ML) techniques. The primary motivation for conducting such a research lies mainly in the need to investigate the long-term electroencephalography (EEG) recordings' visual examination process, often considered as a time-consuming and potentially error-prone procedure, requiring a great deal of mental focus and highly experimented neurologists. On attempting to resolve such a challenge, a number of state-of-the-art ML algorithms have been evaluated and compare in terms of performance, to pinpoint the most effective algorithm fit for accurately extracting epileptic EEG patterns. CONTENT Based on intracranial as well as simulated EEG data, the attained findings turn out to reveal that the randomforest (RF) method proved to be the most consistently effective approach, significantly outperforming the entirety of examined methods in terms of EEG recordings epileptic-pattern identification. Indeed, the RF classifier appeared to record an average balanced classification rate (BCR) of 92.38 % in regard to spikes recognition process, and 78.77 % in terms of HFOs detection. SUMMARY Compared to other approaches, our results provide valuable insights into the RF classifier's effectiveness as a powerful ML technique, fit for detecting EEG signals born epileptic bursts. OUTLOOK As a potential future work, we envisage to further validate and sustain our major reached findings through incorporating a larger EEG dataset. We also aim to explore the generative adversarial networks (GANs) application so as to generate synthetic EEG signals or combine signal generation techniques with deep learning approaches. Through this new vein of thought, we actually preconize to enhance and boost the automated detection methods' performance even more, thereby, noticeably enhancing the epileptic EEG pattern recognition area.
Collapse
Affiliation(s)
- Sahbi Chaibi
- AFD2E Laboratory, National Engineering School, Sfax University, Sfax, Tunisia
- Faculty of Sciences of Monastir, Monastir University, Monastir, Tunisia
| | - Chahira Mahjoub
- AFD2E Laboratory, National Engineering School, Sfax University, Sfax, Tunisia
| | - Wadhah Ayadi
- Faculty of Sciences of Monastir, Monastir University, Monastir, Tunisia
| | | |
Collapse
|
4
|
Lee KT, Kim JH. Relationship between psycho-physiological indicators and task performance under various indoor space designs for telecommuting environment by introducing mixed-reality. Sci Rep 2024; 14:1977. [PMID: 38263203 PMCID: PMC10805844 DOI: 10.1038/s41598-024-52291-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024] Open
Abstract
The increase in telecommuting during COVID-19 and advances in digital technology have necessitated the establishment of guidelines for maximizing productivity through indoor space design for telecommuters. Additionally, understanding the physiological response of individuals working in indoor spaces has attracted attention. This study applied mixed-reality environment to alter the design of the indoor space in real-time, while monitoring the task performance and representative psycho-physiological indicators (electroencephalogram and heart rate variability) of 30 individuals with telecommuting experience. To this end, four tasks, including spatial memory, attention, execution, and working memory, were conducted, and the psycho-physiological data from these tests were statistically analyzed. The results revealed that the design of the indoor space did not affect the spatial memory; however, the parasympathetic nerves were stimulated in visually non-preferred spaces, thus reducing mental stress and leading to high efficiency in short-term work. According to the Yerkes-Dodson law, the working memory of an individual is generally efficient and physically stable over time if they adjust to a preferred or decision-making space. Thus, the future design of telecommuting spaces must consider the type of work being done, and guidelines for spatial design should be developed by recognizing the psycho-physiological status of users, while increasing efficiency.
Collapse
Affiliation(s)
- Kyung-Tae Lee
- Department of Architectural Engineering, Hanyang University, 222 Wangsimni-ro, Science and Technology Hall, Seoul, 04763, Republic of Korea
| | - Ju-Hyung Kim
- Department of Architectural Engineering, Hanyang University, 222 Wangsimni-ro, Science and Technology Hall, Seoul, 04763, Republic of Korea.
| |
Collapse
|
5
|
Gogna Y, Tiwari S, Singla R. Towards a versatile mental workload modeling using neurometric indices. BIOMED ENG-BIOMED TE 2023:bmt-2022-0479. [PMID: 36668677 DOI: 10.1515/bmt-2022-0479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/06/2023] [Indexed: 01/22/2023]
Abstract
Researchers have been working to magnify mental workload (MWL) modeling for a long time. An important aspect of its modeling is feature selection as it interprets bulky and high-dimensional EEG data and enhances the accuracy of the classification model. In this study, a feature selection technique is proposed to obtain an optimized feature set with multiple domain features that can contribute to classifying the MWL at three distinct levels. The brain signals from thirteen healthy subjects were examined while they attended an intrinsic MWL of spotting differences in a set of similar pictures. The Recursive Feature Elimination (RFE) technique selects the robust features from the feature matrix by eliminating all the least contributing features. Along with the Support Vector Machine (SVM), the overall classification accuracy with the proposed RFE reached 0.913 from 0.791 surpassing the other techniques mentioned. The results of the study also significantly display the variation in the mean values of the selected features at the three workload levels (p<0.05). This model can become the principle for defining the workload level quantification applicable to diverse fields like neuroergonomics study, intelligent assistive devices (ADs) development, blue-chip technology exploration, cognitive evaluation of students, power plant operators, traffic operators, etc.
Collapse
Affiliation(s)
- Yamini Gogna
- ICE Department, Dr. B. R. Ambedkar NIT Jalandhar, Jalandhar, Punjab, India
| | - Sheela Tiwari
- ICE Department, Dr. B. R. Ambedkar NIT Jalandhar, Jalandhar, Punjab, India
| | - Rajesh Singla
- ICE Department, Dr. B. R. Ambedkar NIT Jalandhar, Jalandhar, Punjab, India
| |
Collapse
|
6
|
He S, Xiao B, Wei H, Huang S, Chen T. SVM classifier of cervical histopathology images based on texture and morphological features. Technol Health Care 2023; 31:69-80. [PMID: 35754238 DOI: 10.3233/thc-220031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cervical histopathology image classification is a crucial indicator in cervical biopsy results. OBJECTIVE The objective of this study is to identify histopathology images of cervical cancer at an early stage by extracting texture and morphological features for the Support Vector Machine (SVM) classifier. METHODS We extract three different texture features and one morphological feature of cervical histopathology images: first-order histogram, K-means clustering, Gray Level Co-occurrence Matrix (GLCM) and nucleus feature. The original dataset used in our experiment is obtained from 20 patients diagnosed with cervical cancer, including 135 whole slide images (WSIs). Given an entire WSI, the patches on its tissue region are extracted randomly. RESULTS We finally obtain 3,000 patches, including 1,000 normal, 1,000 hysteromyoma and 1,000 cancer images. Among them, 80% of the entire data set is randomly selected as training set and the remaining 20% as test set. The accuracy of SVM classification using first-order histogram, K-means clustering, GLAM and nucleus feature for extracting features are respectively 87.4%, 90.6%, 91.6% and 93.5%. CONCLUSIONS The classification accuracy of the SVM combining the four features is 96.8%, and the proposed nucleus feature plays a key role in the SVM classification of cervical histopathology images.
Collapse
Affiliation(s)
- Siqi He
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Bo Xiao
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Huajiang Wei
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Shenjiao Huang
- GuangZhou Woman and Children's Medical Center, Guangzhou, Guangzhou, China
| | - Tongsheng Chen
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,SCNU Qingyuan Institute of Science and Technology Innovation Co. Ltd., South China Normal University, Qingyuan, Guandong, China
| |
Collapse
|
7
|
Simfukwe C, Youn YC, Kim MJ, Paik J, Han SH. CNN for a Regression Machine Learning Algorithm for Predicting Cognitive Impairment Using qEEG. Neuropsychiatr Dis Treat 2023; 19:851-863. [PMID: 37077704 PMCID: PMC10106803 DOI: 10.2147/ndt.s404528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/05/2023] [Indexed: 04/21/2023] Open
Abstract
Purpose Electroencephalogram (EEG) signals give detailed information on the electrical brain activities occurring in the cerebral cortex. They are used to study brain-related disorders such as mild cognitive impairment (MCI) and Alzheimer's disease (AD). Brain signals obtained using an EEG machine can be a neurophysiological biomarker for early diagnosis of dementia through quantitative EEG (qEEG) analysis. This paper proposes a machine learning methodology to detect MCI and AD from qEEG time-frequency (TF) images of the subjects in an eyes-closed resting state (ECR). Participants and Methods The dataset consisted of 16,910 TF images from 890 subjects: 269 healthy controls (HC), 356 MCI, and 265 AD. First, EEG signals were transformed into TF images using a Fast Fourier Transform (FFT) containing different event-rated changes of frequency sub-bands preprocessed from the EEGlab toolbox in the MATLAB R2021a environment software. The preprocessed TF images were applied in a convolutional neural network (CNN) with adjusted parameters. For classification, the computed image features were concatenated with age data and went through the feed-forward neural network (FNN). Results The trained models', HC vs MCI, HC vs AD, and HC vs CASE (MCI + AD), performance metrics were evaluated based on the test dataset of the subjects. The accuracy, sensitivity, and specificity were evaluated: HC vs MCI was 83%, 93%, and 73%, HC vs AD was 81%, 80%, and 83%, and HC vs CASE (MCI + AD) was 88%, 80%, and 90%, respectively. Conclusion The proposed models trained with TF images and age can be used to assist clinicians as a biomarker in detecting cognitively impaired subjects at an early stage in clinical sectors.
Collapse
Affiliation(s)
- Chanda Simfukwe
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, South Korea
- Correspondence: Young Chul Youn; Su-Hyun Han, Department of Neurology, Chung-Ang University Hospital, Seoul, Republic of Korea, Email ;
| | - Min-Jae Kim
- Department of Image, Chung-Ang University, Seoul, South Korea
| | - Joonki Paik
- Department of Image, Chung-Ang University, Seoul, South Korea
| | - Su-Hyun Han
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, South Korea
| |
Collapse
|
8
|
He X, Wu M, Li H, Liu S, Liu B, Qi H. Real-time regulation of room temperature based on individual thermal sensation using an online brain-computer interface. INDOOR AIR 2022; 32:e13106. [PMID: 36168224 DOI: 10.1111/ina.13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Regulation of indoor temperature based on neurophysiological and psychological signals is one of the most promising technologies for intelligent buildings. In this study, we developed a system for closed-loop control of indoor temperature based on brain-computer interface (BCI) technology for the first time. Electroencephalogram (EEG) signals were collected from subjects for two room temperature categories (cool comfortable and hot uncomfortable) and used to build a thermal-sensation discrimination model (TSDM) with an ensemble learning method. Then, an online BCI system was developed based on the TSDM. In the online room temperature control experiment, when the TSDM detected that the subjects felt hot and uncomfortable, BCI would automatically turn on the air conditioner, and when the TSDM detected that the subjects felt cool and comfortable, BCI would automatically turn off the air conditioner. The results of online experiments in a hot environment showed that a BCI could significantly improve the thermal comfort of subjects (the subjective thermal comfort score decreased from 2.45 (hot uncomfortable) to 0.55 (cool comfortable), p < 0.001). A parallel experiment further showed that if the subjects wore thicker clothes during the experiment, the BCI would turn on the air conditioner for a longer time to ensure the thermal comfort of the subjects. This has further confirmed the effectiveness of TSDM model in evaluating thermal sensation under the dynamic change of room temperature and showed the model's good robustness. This study proposed a new paradigm of human-building interaction, which is expected to play a promising role in the development of human-centered intelligent buildings.
Collapse
Affiliation(s)
- Xiaohe He
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Meng Wu
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Guokeyigong Science & Technology Development Co., Ltd., Tianjin, China
| | - Hailong Li
- Future Energy, School of Business, Society and Engineering (EST), Mälardalen University, Västerås, Sweden
| | - Shengchun Liu
- Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China
| | - Bin Liu
- Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China
| | - Hongzhi Qi
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
9
|
Khanam F, Hossain AA, Ahmad M. Electroencephalogram-based cognitive load level classification using wavelet decomposition and support vector machine. BRAIN-COMPUTER INTERFACES 2022. [DOI: 10.1080/2326263x.2022.2109855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Farzana Khanam
- Department of Biomedical Engineering, Khulna University of Engineering & Technology (KUET), Khulna, Bangladesh
| | - A.B.M. Aowlad Hossain
- Department of Electronics and Communication Engineering, Khulna University of Engineering & Technology (KUET), Khulna, Bangladesh
| | - Mohiuddin Ahmad
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology (KUET), Khulna, Bangladesh
| |
Collapse
|
10
|
Abstract
Analytical paradigms have limited conventional form-finding methods of tensegrities; therefore, an innovative approach is urgently needed. This paper proposes a new form-finding method based on state-of-the-art deep learning techniques. One of the statical paradigms, a force density method, is substituted for trained deep neural networks to obtain necessary information of tensegrities. It is based on the differential evolution algorithm, where the eigenvalue decomposition process of the force density matrix and the process of the equilibrium matrix are not needed to find the feasible sets of nodal coordinates. Three well-known tensegrity examples including a 2D two-strut, a 3D-truncated tetrahedron and an icosahedron tensegrity are presented for numerical verifications. The cases of the ReLU and Leaky ReLU activation functions show better results than those of the ELU and SELU. Moreover, the results of the proposed method are in good agreement with the analytical super-stable lines. Three examples show that the proposed method exhibits more uniform final shapes of tensegrity, and much faster convergence history than those of the conventional one.
Collapse
|
11
|
An efficient salp swarm algorithm based on scale-free informed followers with self-adaption weight. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03438-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Hekmatmanesh A, Wu H, Handroos H. Largest Lyapunov Exponent Optimization for Control of a Bionic-Hand: A Brain Computer Interface Study. FRONTIERS IN REHABILITATION SCIENCES 2022; 2:802070. [PMID: 36188803 PMCID: PMC9397699 DOI: 10.3389/fresc.2021.802070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/28/2021] [Indexed: 01/23/2023]
Abstract
This paper introduces a brain control bionic-hand, and several methods have been developed for predicting and quantifying the behavior of a non-linear system such as a brain. Non-invasive investigations on the brain were conducted by means of electroencephalograph (EEG) signal oscillations. One of the prominent concepts necessary to understand EEG signals is the chaotic concept named the fractal dimension and the largest Lyapunov exponent (LLE). Specifically, the LLE algorithm called the chaotic quantifier method has been employed to compute the complexity of a system. The LLE helps us to understand how the complexity of the brain changes while making a decision to close and open a fist. The LLE has been used for a long time, but here we optimize the traditional LLE algorithm to attain higher accuracy and precision for controlling a bionic hand. In the current study, the main constant input parameters of the LLE, named the false nearest neighbor and mutual information, are parameterized and then optimized by means of the Water Drop (WD) and Chaotic Tug of War (CTW) optimizers. The optimized LLE is then employed to identify imaginary movement patterns from the EEG signals for control of a bionic hand. The experiment includes 21 subjects for recording imaginary patterns. The results illustrated that the CTW solution achieved a higher average accuracy rate of 72.31% in comparison to the traditional LLE and optimized LLE by using a WD optimizer. The study concluded that the traditional LLE required enhancement using optimization methods. In addition, the CTW approximation method has the potential for more efficient solutions in comparison to the WD method.
Collapse
|
13
|
Motor Imagination of Lower Limb Movements at Different Frequencies. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2021:4073739. [PMID: 34976324 PMCID: PMC8716247 DOI: 10.1155/2021/4073739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/10/2021] [Accepted: 11/20/2021] [Indexed: 11/26/2022]
Abstract
Motor imagination (MI) is the mental process of only imagining an action without an actual movement. Research on MI has made significant progress in feature information detection and machine learning decoding algorithms, but there are still problems, such as a low overall recognition rate and large differences in individual execution effects, which make the development of MI run into a bottleneck. Aiming at solving this bottleneck problem, the current study optimized the quality of the MI original signal by “enhancing the difficulty of imagination tasks,” conducted the qualitative and quantitative analyses of EEG rhythm characteristics, and used quantitative indicators, such as ERD mean value and recognition rate. Research on the comparative analysis of the lower limb MI of different tasks, namely, high-frequency motor imagination (HFMI) and low-frequency motor imagination (LFMI), was conducted. The results validate the following: the average ERD of HFMI (−1.827) is less than that of LFMI (−1.3487) in the alpha band, so did (−3.4756 < −2.2891) in the beta band. In the alpha and beta characteristic frequency bands, the average ERD of HFMI is smaller than that of LFMI, and the ERD values of the two are significantly different (p=0.0074 < 0.01; r = 0.945). The ERD intensity STD values of HFMI are less than those of LFMI. which suggests that the ERD intensity individual difference among the subjects is smaller in the HFMI mode than in the LFMI mode. The average recognition rate of HFMI is higher than that of LFMI (87.84% > 76.46%), and the recognition rate of the two modes is significantly different (p=0.0034 < 0.01; r = 0.429). In summary, this research optimizes the quality of MI brain signal sources by enhancing the difficulty of imagination tasks, achieving the purpose of improving the overall recognition rate of the lower limb MI of the participants and reducing the differences of individual execution effects and signal quality among the subjects.
Collapse
|