1
|
Fierabracci A, Belcastro E, Carbone E, Pagliarosi O, Palma A, Pacillo L, Giancotta C, Zangari P, Finocchi A, Cancrini C, Delfino DV, Cappa M, Betterle C. In Search for the Missing Link in APECED-like Conditions: Analysis of the AIRE Gene in a Series of 48 Patients. J Clin Med 2022; 11:3242. [PMID: 35683627 PMCID: PMC9181695 DOI: 10.3390/jcm11113242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
Autoimmune diseases are a heterogeneous group of disorders of the immune system. They can cluster in the same individual, revealing various preferential associations for polyendocrine autoimmune syndromes. Clinical observation, together with advances in genetics and the understanding of pathophysiological processes, has further highlighted that autoimmunity can be associated with immunodeficiency; autoimmunity may even be the first primary immunodeficiency manifestation. Analysis of susceptibility genes for the development of these complex phenotypes is a fundamental issue. In this manuscript, we revised the clinical and immunologic features and the presence of AIRE gene variations in a cohort of 48 patients affected by high polyautoimmunity complexity, i.e., APECED-like conditions, also including patients affected by primary immunodeficiency. Our results evidenced a significant association of the S278R polymorphism of the AIRE gene with APECED-like conditions, including both patients affected by autoimmunity and immunodeficiency and patients with polyautoimmunity compared to healthy controls. A trend of association was also observed with the IVS9+6 G>A polymorphism. The results of this genetic analysis emphasize the need to look for additional genetic determinants playing in concert with AIRE polymorphisms. This will help to improve the diagnostic workup and ensure a precision medicine approach to targeted therapies in APECED-like patients.
Collapse
Affiliation(s)
- Alessandra Fierabracci
- Infectivology and Clinical Trials Research Department, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 00146 Rome, Italy; (E.B.); (E.C.); (O.P.)
| | - Eugenia Belcastro
- Infectivology and Clinical Trials Research Department, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 00146 Rome, Italy; (E.B.); (E.C.); (O.P.)
| | - Elena Carbone
- Infectivology and Clinical Trials Research Department, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 00146 Rome, Italy; (E.B.); (E.C.); (O.P.)
| | - Olivia Pagliarosi
- Infectivology and Clinical Trials Research Department, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 00146 Rome, Italy; (E.B.); (E.C.); (O.P.)
| | - Alessia Palma
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Lucia Pacillo
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.P.); (A.F.); (C.C.)
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Carmela Giancotta
- Immunology and Vaccinology, DPUO, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.G.); (P.Z.)
| | - Paola Zangari
- Immunology and Vaccinology, DPUO, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.G.); (P.Z.)
| | - Andrea Finocchi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.P.); (A.F.); (C.C.)
- Chair of Pediatrics, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Caterina Cancrini
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.P.); (A.F.); (C.C.)
- Chair of Pediatrics, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | | | - Marco Cappa
- Endocrinology Unit, DPUO, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Corrado Betterle
- Endocrine Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy;
| |
Collapse
|
2
|
Autoimmune polyglandular syndrome type 1 and eye damage. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.6-1.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Autoimmune polyendocrine syndrome type 1 (APS type 1) is a disease characterized by a variety of clinical manifestations resulting from the involvement of multiple endocrine and non-endocrine organs in the pathological process. APS type 1 is a rare genetically determined disease with autosomal recessive inheritance. Mutations in the autoimmune regulator gene (AIRE) lead to a disruption of the mechanism of normal antigen expression and the formation of abnormal clones of immune cells, and can cause autoimmune damage to organs. Within APS type 1, the most common disorders are primary adrenal insufficiency, hypoparathyroidism, and chronic candidiasis. Some understudied clinical manifestations of APS type 1 are autoimmune pathological processes in the eye: keratoconjunctivitis, dry eye syndrome, iridocyclitis, retinopathy, retinal detachment, and optic atrophy. This review presents the accumulated experimental and clinical data on the development of eye damage of autoimmune nature in APS type 1, as well as the laboratory and instrumental methods used for diagnosing the disease. Changes in the visual organs in combination with clinical manifestations of hypoparathyroidism, adrenal insufficiency and candidiasis should lead the clinical doctor to suspect the presence of APS type 1 and to examine the patient comprehensively. Timely genetic counselling will allow early identifi cation of the disease, timely prescription of appropriate treatment and prevention of severe complications.
Collapse
|
3
|
Savvateeva EN, Yukina MY, Nuralieva NF, Filippova MA, Gryadunov DA, Troshina EA. Multiplex Autoantibody Detection in Patients with Autoimmune Polyglandular Syndromes. Int J Mol Sci 2021; 22:5502. [PMID: 34071130 PMCID: PMC8197071 DOI: 10.3390/ijms22115502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
The diagnosis of autoimmune polyglandular syndrome (APS) types 1/2 is difficult due to their rarity and nonspecific clinical manifestations. APS-1 development can be identified with assays for autoantibodies against cytokines, and APS-2 development with organ-specific antibodies. In this study, a microarray-based multiplex assay was proposed for simultaneous detection of both organ-specific (anti-21-OH, anti-GAD-65, anti-IA2, anti-ICA, anti-TG, and anti-TPO) and APS-1-specific (anti-IFN-ω, anti-IFN-α-2a, and anti-IL-22) autoantibodies. Herein, 206 serum samples from adult patients with APS-1, APS-2, isolated autoimmune endocrine pathologies or non-autoimmune endocrine pathologies and from healthy donors were analyzed. The prevalence of autoantibodies differed among the groups of healthy donors and patients with non-, mono- and multi-endocrine diseases. APS-1 patients were characterized by the presence of at least two specific autoantibodies (specificity 99.5%, sensitivity 100%). Furthermore, in 16 of the 18 patients, the APS-1 assay revealed triple positivity for autoantibodies against IFN-ω, IFN-α-2a and IL-22 (specificity 100%, sensitivity 88.9%). No anti-cytokine autoantibodies were found in the group of patients with non-APS-1 polyendocrine autoimmunity. The accuracy of the microarray-based assay compared to ELISA for organ-specific autoantibodies was 88.8-97.6%. This multiplex assay can be part of the strategy for diagnosing and predicting the development of APS.
Collapse
Affiliation(s)
- Elena N. Savvateeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.A.F.); (D.A.G.)
| | - Marina Yu. Yukina
- Endocrinology Research Centre, Ministry of Health of Russia, 117036 Moscow, Russia; (M.Y.Y.); (N.F.N.); (E.A.T.)
| | - Nurana F. Nuralieva
- Endocrinology Research Centre, Ministry of Health of Russia, 117036 Moscow, Russia; (M.Y.Y.); (N.F.N.); (E.A.T.)
| | - Marina A. Filippova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.A.F.); (D.A.G.)
| | - Dmitry A. Gryadunov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.A.F.); (D.A.G.)
| | - Ekaterina A. Troshina
- Endocrinology Research Centre, Ministry of Health of Russia, 117036 Moscow, Russia; (M.Y.Y.); (N.F.N.); (E.A.T.)
| |
Collapse
|
4
|
Yukina M, Erofeeva T, Nuralieva N, Andreeva T, Savvateeva E, Dudko N, Troshina E, Rogaev E, Melnichenko G. Novel Gene Mutations Regulating Immune Responses in Autoimmune Polyglandular Syndrome With an Atypical Course. J Endocr Soc 2021; 5:bvab077. [PMID: 34235359 PMCID: PMC8252644 DOI: 10.1210/jendso/bvab077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Indexed: 11/19/2022] Open
Abstract
Context Autoimmune polyglandular syndrome (APS) is a cluster of endocrine disorders arising from immune dysregulation, often combined with damage to nonendocrine organs. There are 2 types of APS: type 1 and type 2 (APS-1 and APS-2, respectively). In clinical practice, an atypical course of APS is often observed. Objective This work aims to find a novel genetic predictor of APS. Methods We performed exome sequencing in 2 patients with an atypical clinical APS picture and members of their families. Patient A presented with a manifestation of APS-2 in early childhood and patient B with a late manifestation of the main components of APS-1. Results In patient B, we identified inherited compound mutations as a novel combination of the c.769C > T and c.821delG alleles of AIRE and genetic variation in the CIITA gene. No homozygous or compound mutations in AIRE were found in patient A, but we did reveal mutations in genes encoding regulatory proteins of innate and acquired immunity in this patient. Conclusion Our data revealed novel combination of mutations in the AIRE gene in atypical APS and imply that mutations in immune-related genes may modify the clinical manifestation of APS in AIRE-mutation carriers and contribute to the development of autoimmune pathology in non-AIRE carriers with atypical APS.
Collapse
Affiliation(s)
- Marina Yukina
- Endocrinology Research Centre, Moscow 117036, Russia
| | - Taisia Erofeeva
- Laboratory of Evolutionary genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119333, Russia
| | | | - Tatiana Andreeva
- Laboratory of Evolutionary genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119333, Russia.,Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow 119192, Russia
| | - Elena Savvateeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Natalia Dudko
- Laboratory of Evolutionary genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119333, Russia
| | | | - Evgeny Rogaev
- Laboratory of Evolutionary genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119333, Russia.,Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow 119192, Russia.,Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi 354340, Russia.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA
| | | |
Collapse
|
5
|
Zhan F, Cao L. Late-onset autoimmune polyendocrine syndrome type 1: a case report and literature review. Immunol Res 2021; 69:139-144. [PMID: 33599910 PMCID: PMC7889704 DOI: 10.1007/s12026-021-09180-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/07/2021] [Indexed: 01/07/2023]
Abstract
Autoimmune polyendocrine syndrome type 1 (APS-1), also referred to as autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), a rare monogenic disorder, is classically characterized by a triad of chronic mucocutaneous candidiasis, hypoparathyroidism, and primary adrenal insufficiency. The identified causative gene is autoimmune regulator (AIRE), which encodes a critical transcription factor and is essential for self-tolerance. Here, we describe a late-onset Chinese case who presented with symptoms of persistent tetany due to hypocalcemia. Extensive clinical evaluations revealed that the patient manifested beyond the classic triad of the disease, and next-generation sequencing identified a known homozygous AIRE mutation (p.R139X). APS-1 is a rare inherited immunodeficiency disease with high clinical and genetic heterogeneity. By retrospectively analyzing the disease, we comprehensively reviewed the phenotypic features, summarized the genotype spectrum, and discussed the possible immunological mechanisms of the disease to enhance earlier recognition and implement targeted preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Feixia Zhan
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yi Shan Road, Shanghai, 200233 China
- Department of Neurology, Changzheng Hospital, Naval Medical University, Shanghai, 200003 China
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yi Shan Road, Shanghai, 200233 China
| |
Collapse
|
6
|
Betterle C, Presotto F, Furmaniak J. Epidemiology, pathogenesis, and diagnosis of Addison's disease in adults. J Endocrinol Invest 2019; 42:1407-1433. [PMID: 31321757 DOI: 10.1007/s40618-019-01079-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Addison's disease (AD) is a rare disorder and among adult population in developed countries is most commonly caused by autoimmunity. In contrast, in children genetic causes are responsible for AD in the majority of patients. PURPOSE This review describes epidemiology, pathogenesis, genetics, natural history, clinical manifestations, immunological markers and diagnostic strategies in patients with AD. Standard care treatments including the management of patients during pregnancy and adrenal crises consistent with the recent consensus statement of the European Consortium and the Endocrine Society Clinical Practice Guideline are described. In addition, emerging therapies designed to improve the quality of life and new strategies to modify the natural history of autoimmune AD are discussed. CONCLUSIONS Progress in optimizing replacement therapy for patients with AD has allowed the patients to lead a normal life. However, continuous education of patients and health care professionals of ever-present danger of adrenal crisis is essential to save lives of patients with AD.
Collapse
Affiliation(s)
- C Betterle
- Endocrine Unit, Department of Medicine (DIMED), University of Padova, Via Ospedale Civile 105, 35128, Padua, Italy
| | - F Presotto
- Endocrine Unit, Department of Medicine (DIMED), University of Padova, Via Ospedale Civile 105, 35128, Padua, Italy.
- Unit of Internal Medicine, Ospedale dell'Angelo, via Paccagnella 11, 30174, Mestre-Venice, Italy.
| | | |
Collapse
|
7
|
|
8
|
Pellegrino M, Bellacchio E, Dhamo R, Frasca F, Betterle C, Fierabracci A. A Novel Homozygous Mutation of the AIRE Gene in an APECED Patient From Pakistan: Case Report and Review of the Literature. Front Immunol 2018; 9:1835. [PMID: 30150985 PMCID: PMC6099424 DOI: 10.3389/fimmu.2018.01835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/25/2018] [Indexed: 11/13/2022] Open
Abstract
Autoimmune-poly-endocrinopathy-candidiasis-ectodermal-dystrophy syndrome (APECED) is a rare monogenic recessive disorder caused by mutations in the autoimmune regulator (AIRE) gene. Criteria for the diagnosis of APECED are the presence of two of the following disorders: chronic mucocutaneous candidiasis (CMC), chronic hypoparathyroidism (CHP), and Addison's disease. APECED develops at high incidence in Finns, Sardinians, and Iranian Jews and presents with a wide range of clinical phenotypes and genotypes. In this manuscript, we report the clinical, endocrinological, and molecular features of a 16-year-old female patient from Pakistan living in Italy and presenting the major APECED clinical manifestations CMC, CHP, and primary adrenal insufficiency. Premature ovarian failure, chronic bronchopneumopathy, vitiligo, Hashimoto's thyroiditis emerged as associated diseases. In our patient, AIRE gene screening revealed the novel c.396G>C (p.Arg132Ser; p.R132S) mutation in homozygosity thus confirming APECED diagnosis. This is the first reported mutation within the nuclear localization signal (NLS) that is associated with APECED. The NLS mutation affects the nuclear import of classical transcription factors through nuclear pore by recognition of nuclear import receptors, the importin α molecules. By displaying crystal structures of the peptide containing the KRK basic residue cluster bound to α importins, we show that p.R132S replacement in 131-KRK-133 does not reproduce these interactions. Thus, we propose that the novel mutation exerts its pathogenetic effect by impairing the nuclear import of the Aire protein. The present case report is added to a limited series of Pakistani APECED patients who we reviewed from the scientific literature, mostly diagnosed on clinical findings.
Collapse
Affiliation(s)
- Marsha Pellegrino
- Infectivology and Clinical Trials Research Division, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Emanuele Bellacchio
- Molecular Genetics and Functional Genomics, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, Rome, Italy
| | | | - Federica Frasca
- Infectivology and Clinical Trials Research Division, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Corrado Betterle
- Endocrine Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Division, Bambino Gesù Children’s Hospital, Rome, Italy
| |
Collapse
|
9
|
The immunobiology and clinical features of type 1 autoimmune polyglandular syndrome (APS-1). Autoimmun Rev 2018; 17:78-85. [DOI: 10.1016/j.autrev.2017.11.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 10/08/2017] [Indexed: 12/15/2022]
|
10
|
Li SF, Zhao FR, Shao JJ, Xie YL, Chang HY, Zhang YG. Interferon-omega: Current status in clinical applications. Int Immunopharmacol 2017; 52:253-260. [PMID: 28957693 PMCID: PMC7106160 DOI: 10.1016/j.intimp.2017.08.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/20/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022]
Abstract
Since 1985, interferon (IFN)-ω, a type I IFN, has been identified in many animals, but not canines and mice. It has been demonstrated to have antiviral, anti-proliferation, and antitumor activities that are similar to those of IFN-α. To date, IFN-ω has been explored as a treatment option for some diseases or viral infections in humans and other animals. Studies have revealed that human IFN-ω displays antitumor activities in some models of human cancer cells and that it can be used to diagnose some diseases. While recombinant feline IFN-ω has been licensed in several countries for treating canine parvovirus, feline leukemia virus, and feline immunodeficiency virus infections, it also exhibits a certain efficacy when used to treat other viral infections or diseases. This review examines the known biological activity of IFN-ω and its clinical applications. We expect that the information provided in this review will stimulate further studies of IFN-ω as a therapeutic agent.
Collapse
Affiliation(s)
- Shi-Fang Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, China
| | - Fu-Rong Zhao
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, China..
| | - Jun-Jun Shao
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, China
| | - Yin-Li Xie
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, China
| | - Hui-Yun Chang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, China..
| | - Yong-Guang Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, China
| |
Collapse
|