1
|
Sajeevan A, Sukumaran RA, Panicker LR, Kotagiri YG. Trends in ready-to-use portable electrochemical sensing devices for healthcare diagnosis. Mikrochim Acta 2025; 192:80. [PMID: 39808331 DOI: 10.1007/s00604-024-06916-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Compared with previous decades, healthcare has emerged as a key global concern in light of the recurrent outbreak of pandemics. The initial stage in the provision of healthcare involves the process of diagnosis. Countries worldwide advocate for healthcare research due to its efficacy and capacity to assist diverse populations. Enhanced levels of healthcare management can be attained by the implementation of rapid diagnostic procedures and cognitive data analysis. Therefore, there is a constant need for smart therapeutics, analytical tools, and diagnostic systems to improve health and well-being. The past decade witnessed enormous growth in the sensing detection systems integrated into smartphones with printed electrodes and wearable patches for the screening of various healthcare diagnostics biomarkers and therapeutic drugs. This review focuses on the expansion of point-of-care technologies and their incorporation into a broader array of portable devices, a critical aspect in the context of decentralized societies and their healthcare systems. Discussions are broadly focused on the different sensing platforms such as solid electrodes, screen-printed electrodes, and paper-based sensing strategies for the detection of various biomarkers and therapeutic drugs. We also discuss the next-generation healthcare wearable sensing device importance and future research possibilities. Finally, the portable electrochemical sensing devices and their future perspective developments towards healthcare diagnosis are critically summarized.
Collapse
Affiliation(s)
- Anjana Sajeevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India
| | - Reshmi A Sukumaran
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India
| | - Lakshmi R Panicker
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India
| | - Yugender Goud Kotagiri
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India.
| |
Collapse
|
2
|
Liu C, Franceschini C, Weber S, Dib T, Liu P, Wu L, Farnesi E, Zhang WS, Sivakov V, Luppa PB, Popp J, Cialla-May D. SERS-based detection of the antibiotic ceftriaxone in spiked fresh plasma and microdialysate matrix by using silver-functionalized silicon nanowire substrates. Talanta 2024; 271:125697. [PMID: 38295449 DOI: 10.1016/j.talanta.2024.125697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Therapeutic drug monitoring (TDM) is an important tool in precision medicine as it allows estimating pharmacodynamic and pharmacokinetic effects of drugs in clinical settings. An accurate, fast and real-time determination of the drug concentrations in patients ensures fast decision-making processes at the bedside to optimize the clinical treatment. Surface-enhanced Raman spectroscopy (SERS), which is based on the application of metallic nanostructured substrates to amplify the inherent weak Raman signal, is a promising technique in medical research due to its molecular specificity and trace sensitivity accompanied with short detection times. Therefore, we developed a SERS-based detection scheme using silicon nanowires decorated with silver nanoparticles, fabricated by means of top-down etching combined with chemical deposition, to detect the antibiotic ceftriaxone (CRO) in spiked fresh plasma and microdialysis samples. We successfully detected CRO in both matrices with an LOD of 94 μM in protein-depleted fresh plasma and 1.4 μM in microdialysate.
Collapse
Affiliation(s)
- Chen Liu
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | - Célia Franceschini
- UR Molecular Systems, Department of Chemistry, University of Liège, 4000, Liège, Belgium
| | - Susanne Weber
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar of the Technische Universität München, Ismaninger Str. 22, 81675, München, Germany
| | - Tony Dib
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | - Poting Liu
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | - Long Wu
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University. Haikou 570228, China; Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, 430068, China
| | - Edoardo Farnesi
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | - Wen-Shu Zhang
- China Fire and Rescue Institute, Beijing, 102202, China
| | - Vladimir Sivakov
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Peter B Luppa
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar of the Technische Universität München, Ismaninger Str. 22, 81675, München, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany.
| |
Collapse
|
3
|
Liang WS, Beaulieu-Jones B, Smalley S, Snyder M, Goetz LH, Schork NJ. Emerging therapeutic drug monitoring technologies: considerations and opportunities in precision medicine. Front Pharmacol 2024; 15:1348112. [PMID: 38545548 PMCID: PMC10965556 DOI: 10.3389/fphar.2024.1348112] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/27/2024] [Indexed: 11/11/2024] Open
Abstract
In recent years, the development of sensor and wearable technologies have led to their increased adoption in clinical and health monitoring settings. One area that is in early, but promising, stages of development is the use of biosensors for therapeutic drug monitoring (TDM). Traditionally, TDM could only be performed in certified laboratories and was used in specific scenarios to optimize drug dosage based on measurement of plasma/blood drug concentrations. Although TDM has been typically pursued in settings involving medications that are challenging to manage, the basic approach is useful for characterizing drug activity. TDM is based on the idea that there is likely a clear relationship between plasma/blood drug concentration (or concentration in other matrices) and clinical efficacy. However, these relationships may vary across individuals and may be affected by genetic factors, comorbidities, lifestyle, and diet. TDM technologies will be valuable for enabling precision medicine strategies to determine the clinical efficacy of drugs in individuals, as well as optimizing personalized dosing, especially since therapeutic windows may vary inter-individually. In this mini-review, we discuss emerging TDM technologies and their applications, and factors that influence TDM including drug interactions, polypharmacy, and supplement use. We also discuss how using TDM within single subject (N-of-1) and aggregated N-of-1 clinical trial designs provides opportunities to better capture drug response and activity at the individual level. Individualized TDM solutions have the potential to help optimize treatment selection and dosing regimens so that the right drug and right dose may be matched to the right person and in the right context.
Collapse
Affiliation(s)
- Winnie S. Liang
- Net/Bio Inc, Los Angeles, CA, United States
- Translational Genomics Research Institute (TGen), Phoenix, AZ, United States
| | - Brett Beaulieu-Jones
- Net/Bio Inc, Los Angeles, CA, United States
- University of Chicago, Chicago, IL, United States
| | | | - Michael Snyder
- Net/Bio Inc, Los Angeles, CA, United States
- Stanford University, Stanford, CA, United States
| | | | - Nicholas J. Schork
- Net/Bio Inc, Los Angeles, CA, United States
- Translational Genomics Research Institute (TGen), Phoenix, AZ, United States
| |
Collapse
|
4
|
Lilleøre JG, Vittrup S, Tøstesen SK, Hanberg P, Stilling M, Bue M. Comparison of Intravenous Microdialysis and Standard Plasma Sampling for Monitoring of Vancomycin and Meropenem Plasma Concentrations-An Experimental Porcine Study. Antibiotics (Basel) 2023; 12:antibiotics12040791. [PMID: 37107154 PMCID: PMC10135263 DOI: 10.3390/antibiotics12040791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Microdialysis is a catheter-based method suitable for dynamic sampling of unbound antibiotic concentrations. Intravenous antibiotic concentration sampling by microdialysis has several advantages and may be a superior alternative to standard plasma sampling. We aimed to compare concentrations obtained by continuous intravenous microdialysis sampling and by standard plasma sampling of both vancomycin and meropenem in a porcine model. Eight female pigs received 1 g of both vancomycin and meropenem, simultaneously over 100 and 10 min, respectively. Prior to drug infusion, an intravenous microdialysis catheter was placed in the subclavian vein. Microdialysates were collected for 8 h. From a central venous catheter, plasma samples were collected in the middle of every dialysate sampling interval. A higher area under the concentration/time curve and peak drug concentration were found in standard plasma samples compared to intravenous microdialysis samples, for both vancomycin and meropenem. Both vancomycin and meropenem concentrations obtained with intravenous microdialysis were generally lower than from standard plasma sampling. The differences in key pharmacokinetic parameters between the two sampling techniques underline the importance of further investigations to find the most suitable and reliable method for continuous intravenous antibiotic concentration sampling.
Collapse
Affiliation(s)
- Johanne Gade Lilleøre
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Aarhus Denmark Microdialysis Research Group (ADMIRE), Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Sofus Vittrup
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Aarhus Denmark Microdialysis Research Group (ADMIRE), Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Sara Kousgaard Tøstesen
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Aarhus Denmark Microdialysis Research Group (ADMIRE), Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Pelle Hanberg
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Aarhus Denmark Microdialysis Research Group (ADMIRE), Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Maiken Stilling
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Aarhus Denmark Microdialysis Research Group (ADMIRE), Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Orthopedic Surgery, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Mats Bue
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Aarhus Denmark Microdialysis Research Group (ADMIRE), Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Orthopedic Surgery, Aarhus University Hospital, 8200 Aarhus, Denmark
| |
Collapse
|
5
|
Briki M, André P, Thoma Y, Widmer N, Wagner AD, Decosterd LA, Buclin T, Guidi M, Carrara S. Precision Oncology by Point-of-Care Therapeutic Drug Monitoring and Dosage Adjustment of Conventional Cytotoxic Chemotherapies: A Perspective. Pharmaceutics 2023; 15:pharmaceutics15041283. [PMID: 37111768 PMCID: PMC10147065 DOI: 10.3390/pharmaceutics15041283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Therapeutic drug monitoring (TDM) of conventional cytotoxic chemotherapies is strongly supported yet poorly implemented in daily practice in hospitals. Analytical methods for the quantification of cytotoxic drugs are instead widely presented in the scientific literature, while the use of these therapeutics is expected to keep going for longer. There are two main issues hindering the implementation of TDM: turnaround time, which is incompatible with the dosage profiles of these drugs, and exposure surrogate marker, namely total area under the curve (AUC). Therefore, this perspective article aims to define the adjustment needed from current to efficient TDM practice for cytotoxics, namely point-of-care (POC) TDM. For real-time dose adjustment, which is required for chemotherapies, such POC TDM is only achievable with analytical methods that match the sensitivity and selectivity of current methods, such as chromatography, as well as model-informed precision dosing platforms to assist the oncologist with dose fine-tuning based on quantification results and targeted intervals.
Collapse
Affiliation(s)
- Myriam Briki
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Bio/CMOS Interfaces Laboratory, École Polytechnique Fédérale de Lausanne-EPFL, 2002 Neuchâtel, Switzerland
| | - Pascal André
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Yann Thoma
- School of Engineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland, 1401 Yverdon-les-Bains, Switzerland
| | - Nicolas Widmer
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Pharmacy of the Eastern Vaud Hospitals, 1847 Rennaz, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, 1206 Geneva, Switzerland
| | - Anna D Wagner
- Service of Medical Oncology, Department of Oncology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Laurent A Decosterd
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Thierry Buclin
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Monia Guidi
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, 1206 Geneva, Switzerland
- Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Sandro Carrara
- Bio/CMOS Interfaces Laboratory, École Polytechnique Fédérale de Lausanne-EPFL, 2002 Neuchâtel, Switzerland
| |
Collapse
|
6
|
Rankin-Turner S, Heaney LM. Mass spectrometry in the clinical laboratory. A short journey through the contribution to the scientific literature by CCLM. Clin Chem Lab Med 2022; 61:873-879. [PMID: 36282951 DOI: 10.1515/cclm-2022-0984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Mass spectrometry (MS) has been a gold standard in the clinical laboratory for decades. Although historically refined to limited areas of study such as neonatal screening and steroid analysis, technological advancements in the field have resulted in MS becoming more powerful, versatile, and user-friendly than ever before. As such, the potential for the technique in clinical chemistry has exploded. The past two decades have seen advancements in biomarker detection for disease diagnostics, new methods for protein measurement, improved methodologies for reliable therapeutic drug monitoring, and novel technologies for automation and high throughput. Throughout this time, Clinical Chemistry and Laboratory Medicine has embraced the rapidly developing field of mass spectrometry, endeavoring to highlight the latest techniques and applications that have the potential to revolutionize clinical testing. This mini review will highlight a selection of these critical contributions to the field.
Collapse
Affiliation(s)
- Stephanie Rankin-Turner
- W. Harry Feinstone Department of Molecular Microbiology and Immunology , Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University , Baltimore , MD , USA
| | - Liam M. Heaney
- School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| |
Collapse
|
7
|
Tombelli S, Trono C, Berneschi S, Berrettoni C, Giannetti A, Bernini R, Persichetti G, Testa G, Orellana G, Salis F, Weber S, Luppa PB, Porro G, Quarto G, Schubert M, Berner M, Freitas PP, Cardoso S, Franco F, Silverio V, Lopez-Martinez M, Hilbig U, Freudenberger K, Gauglitz G, Becker H, Gärtner C, O'Connell MT, Baldini F. An integrated device for fast and sensitive immunosuppressant detection. Anal Bioanal Chem 2022; 414:3243-3255. [PMID: 34936009 PMCID: PMC8956524 DOI: 10.1007/s00216-021-03847-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/22/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022]
Abstract
The present paper describes a compact point of care (POC) optical device for therapeutic drug monitoring (TDM). The core of the device is a disposable plastic chip where an immunoassay for the determination of immunosuppressants takes place. The chip is designed in order to have ten parallel microchannels allowing the simultaneous detection of more than one analyte with replicate measurements. The device is equipped with a microfluidic system, which provides sample mixing with the necessary chemicals and pumping samples, reagents and buffers into the measurement chip, and with integrated thin film amorphous silicon photodiodes for the fluorescence detection. Submicrometric fluorescent magnetic particles are used as support in the immunoassay in order to improve the efficiency of the assay. In particular, the magnetic feature is used to concentrate the antibody onto the sensing layer leading to a much faster implementation of the assay, while the fluorescent feature is used to increase the optical signal leading to a larger optical dynamic change and consequently a better sensitivity and a lower limit of detection. The design and development of the whole integrated optical device are here illustrated. In addition, detection of mycophenolic acid and cyclosporine A in spiked solutions and in microdialysate samples from patient blood with the implemented device are reported.
Collapse
Affiliation(s)
- Sara Tombelli
- Institute of Applied Physics "Nello Carrara", CNR-IFAC, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Cosimo Trono
- Institute of Applied Physics "Nello Carrara", CNR-IFAC, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy.
| | - Simone Berneschi
- Institute of Applied Physics "Nello Carrara", CNR-IFAC, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Chiara Berrettoni
- Institute of Applied Physics "Nello Carrara", CNR-IFAC, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Ambra Giannetti
- Institute of Applied Physics "Nello Carrara", CNR-IFAC, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Romeo Bernini
- Institute for Electromagnetic Sensing of the Environment, CNR-IREA, Via Diocleziano 328, 80124, Napoli, Italy
| | - Gianluca Persichetti
- Institute for Electromagnetic Sensing of the Environment, CNR-IREA, Via Diocleziano 328, 80124, Napoli, Italy
| | - Genni Testa
- Institute for Electromagnetic Sensing of the Environment, CNR-IREA, Via Diocleziano 328, 80124, Napoli, Italy
| | - Guillermo Orellana
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Francesca Salis
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Susanne Weber
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technische Universität München, Marchioninistrasse 15, 8000, Munich, Germany
| | - Peter B Luppa
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technische Universität München, Marchioninistrasse 15, 8000, Munich, Germany
| | - Giampiero Porro
- Datamed Srl, Via Grandi 4/6, 20068 - Peschiera Borromeo, Milan, Italy
| | - Giovanna Quarto
- Datamed Srl, Via Grandi 4/6, 20068 - Peschiera Borromeo, Milan, Italy
| | - Markus Schubert
- Institute for Photovoltaics and Research Center SCoPE, University of Stuttgart, 70569, Stuttgart, Germany
| | - Marcel Berner
- Innovative Pyrotechnik GmbH, Steinwerkstraße 2, 71139, Ehningen, Germany
| | - Paulo P Freitas
- Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias, R.Alves Redol 9, 1000-027, Lisbon, Portugal
| | - Susana Cardoso
- Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias, R.Alves Redol 9, 1000-027, Lisbon, Portugal
| | - Fernando Franco
- Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias, R.Alves Redol 9, 1000-027, Lisbon, Portugal
| | - Vânia Silverio
- Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias, R.Alves Redol 9, 1000-027, Lisbon, Portugal
| | - Maria Lopez-Martinez
- Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias, R.Alves Redol 9, 1000-027, Lisbon, Portugal
| | - Urs Hilbig
- Institute for Physical and Theoretical Chemistry, Eberhard Karls University, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Kathrin Freudenberger
- Institute for Physical and Theoretical Chemistry, Eberhard Karls University, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Günter Gauglitz
- Institute for Physical and Theoretical Chemistry, Eberhard Karls University, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Holger Becker
- microfluidic ChipShop GmbH, Stockholmer Str. 20, 07747, Jena, Germany
| | - Claudia Gärtner
- microfluidic ChipShop GmbH, Stockholmer Str. 20, 07747, Jena, Germany
| | - Mark T O'Connell
- Cornel Medical Limited, 17 Church Walk, St Neots, Cambridgeshire, PE19 1JH, UK
| | - Francesco Baldini
- Institute of Applied Physics "Nello Carrara", CNR-IFAC, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Microdialysis techniques and microdialysis-based patient-near diagnostics. Anal Bioanal Chem 2022; 414:3165-3175. [PMID: 35028692 DOI: 10.1007/s00216-021-03830-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 01/04/2023]
Abstract
This article will debate the usefulness of POCT measurements and the contribution microdialysis can make to generating valuable information. A particular theme will be the rarely considered difference between ex vivo sampling, which typically generates only a static measure of concentration, and in vivo measurements that are subject to dynamic changes due to mass transfer. Those dynamic changes provide information about the patients' physiological state.
Collapse
|