1
|
Zhang R, Xing L, Wang X, Shan Z, Wang T, Zhang Y, Wang W, Wang Y, Wang H. Inhibition of pancreatic lipase and cholesterol by hawthorn extract: A study of binding mechanisms and inhibitor screening. Int J Biol Macromol 2025; 311:143680. [PMID: 40316100 DOI: 10.1016/j.ijbiomac.2025.143680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/26/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Inhibiting the activity of pancreatic lipase and reducing intestinal cholesterol absorption are potential strategies to combat obesity. This study investigated the mechanisms by which hawthorn (Crataegus pinnatifida) extract affects pancreatic lipase (PL) and disrupts cholesterol micelle formation. Enriched with bioactive compounds, hawthorn extract (HE) inhibited PL activity through reversible mixed inhibition, with a half-maximal inhibitory concentration (IC50) of 2.92 mg/mL. Infrared spectroscopy, circular dichroism and fluorescence quenching experiments demonstrated that HE binding to PL induces conformational changes in both tertiary and secondary structures. This interaction facilitated the transformation of β-turns to random coils and quenched the fluorescence of the protein through a static quenching mechanism. HPLC, immobilized enzymes and molecular docking studies collectively revealed that rutin, chlorogenic acid, and isoquercitrin in HE exhibited strong binding affinity with PL, serving as key components in inhibiting PL activity. Furthermore, HE increased the particle size of cholesterol micelles while decreasing their solubility, which makes it more difficult for lipases to function in the intestine. Overall, our study suggests that HE may serve as an effective pancreatic lipase inhibitor, presenting potential applications in the development of functional foods for obesity reduction and lipid-lowering.
Collapse
Affiliation(s)
- Ran Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Lulu Xing
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Xin Wang
- Tianjin Guanfang Fruit Juice Co. Ltd., Tianjin 301726, China
| | - Zuoyu Shan
- Tianjin Guanfang Fruit Juice Co. Ltd., Tianjin 301726, China
| | - Tianxin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Ye Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Wenjie Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Yuan Wang
- Department of Nutrition and Health, China Agricultural University (CAU), Beijing 100193, China.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| |
Collapse
|
2
|
Sentkowska A, Pyrzynska K. Catechins and Selenium Species-How They React with Each Other. Molecules 2023; 28:5897. [PMID: 37570866 PMCID: PMC10420645 DOI: 10.3390/molecules28155897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The combination of selenium and tea infusion, both with antioxidant properties, has potentially complementary mechanisms of action. Se-enriched tea has been considered as a possible Se supplement and a functional beverage to reduce the health risk of Se deficiency. This work investigated the interactions between plant catechins present in tea infusions and selenium species based on changes in the concentration of both reagents, their stability in aqueous solutions, and the possibilities of selenonanoparticles (SeNPs) formation. Selenium species exhibited instability both alone in their standard solutions and in the presence of studied catechins; selenocystine appeared as the most unstable. The recorded UV-Vis absorption spectra indicated the formation of SeNPs in the binary mixtures of catechins and selenite. SeNPs have also formed with diameters smaller than 100 nm when selenite and selenomethionine were added to tea infusions. This is an advantage from the point of view of potential medical applications.
Collapse
Affiliation(s)
| | - Krystyna Pyrzynska
- Faculty of Chemistry, University of Warsaw, Pasteur Str. 1, 02-093 Warsaw, Poland
| |
Collapse
|
3
|
He N, Zhao T. Propranolol induces large-scale remodeling of lipid bilayers: tubules, patches, and holes. RSC Adv 2023; 13:7719-7730. [PMID: 36908547 PMCID: PMC9994463 DOI: 10.1039/d3ra00319a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Herein, we report fluorescence microscopy analysis of the interaction between propranolol (PPN), a beta-adrenergic blocking agent, and planar supported lipid bilayers (SLBs), as model membranes. The results indicate that PPN can remarkably promote largescale remodeling in SLBs with various lipid compositions. It was found that PPN insertion induces the formation of long microtubules that can retract into hemispherical caps on the surface of the bilayer. These transformations are dynamic, partially reversible, and dependent upon the drug concentration. Quantitative analysis revealed a three-step model for PPN-lipid bilayer interaction, with the first step involving interfacial electrostatic adsorption, the second step centered on hydrophobic insertion, and the third step associated with membrane disruption and hole formation. By introducing cholesterol, phosphoethanolamine, phosphatidylglycerol, and phosphatidylserine lipids into the phosphocholine SLBs, it was illustrated that both the chemistry of the lipid headgroups and the packing of lipid acyl chains can substantially affect the particular steps in the interactions between PPN and lipid bilayers. Our findings may help to elucidate the possible mechanisms of PPN interaction with lipid membranes, the toxic behavior and overdosage scenarios of beta-blockers, and provide valuable information for drug development and modification.
Collapse
Affiliation(s)
- Ni He
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science Shanghai 201620 China +86-021-67791214
| | - Tao Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science Shanghai 201620 China +86-021-67791214
| |
Collapse
|
4
|
Da Ressurreição S, Pedreiro S, Batista MT, Figueirinha A. Effect of Phenolic Compounds from Cymbopogon citratus (DC) Stapf. Leaves on Micellar Solubility of Cholesterol. Molecules 2022; 27:7338. [PMID: 36364172 PMCID: PMC9655935 DOI: 10.3390/molecules27217338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 04/26/2025] Open
Abstract
Dyslipidemias are one of the risk factors for cardiovascular diseases, the leading cause of death and hospitalization worldwide. One way to control cholesterol levels is to control the exogenous cholesterol intake in the body. Natural polyphenolic compounds, namely theaflavins from plant extracts such as black tea, showed the ability to inhibit the formation of the micellar structure, essential for the absorption of cholesterol in the intestine. There are several methodologies to determine this effect, many of which are expensive and time-consuming. Due to these facts, the main purposes of this work were to optimize an inexpensive colorimetric method to study, in vitro, the micellar solubility of cholesterol and applied it to plant extracts. In this work, Cymbopogon citratus leaf extracts, its phenolic fractions, and flavonoids were evaluated. The non-delipidified infusion (CcI) obtained a maximum percentage of micelle destruction of 59.22% for a concentration of 50 μg/mL and the delipidified infusion (CcdI) obtained a maximum percentage of micelle destruction of 58.01% for a concentration of 200 μg/mL. In the case of the fraction of phenolic acids (CcPAs), 23.85% of maximum micellar destruction was recorded for the concentration of 100 μg/mL, while for the fraction of flavonoids (CcF), the micellar destruction was 92.74% at 1 μg/mL, and for the tannin fraction (CcT) of 99.45% at 25 μg/mL. Luteolin presented a percentage of micelle destruction of 94.83% in the concentration of 1 ng/mL, followed by luteolin-7-O-glucoside with 93.71% and luteo-lin-6-C-glucoside with 91.26% at the concentrations of 25 ng/mL and 50 ng/mL, respectively. These results suggest the capability of polyphenols from Cymbopogon citratus to prevent the cholesterol absorption in the gut by micellar destruction, and its contribution for cholesterol-lowering activity.
Collapse
Affiliation(s)
- Sandrine Da Ressurreição
- Polytechnic of Coimbra, Coimbra Agriculture School, 3045-601 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Research Center for Natural Resources, Environment and Society (CERNAS), Coimbra Agriculture School, 3045-601 Coimbra, Portugal
| | - Sónia Pedreiro
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, R. D. Manuel II, Apartado, 55142 Oporto, Portugal
| | - Maria Teresa Batista
- CIEPQPF, FFUC, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, R. D. Manuel II, Apartado, 55142 Oporto, Portugal
| |
Collapse
|
5
|
Insights into molecular mechanism of action of citrus flavonoids hesperidin and naringin on lipid bilayers using spectroscopic, calorimetric, microscopic and theoretical studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118411] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Zuñiga-Martínez BS, Domínguez-Avila JA, Wall-Medrano A, Ayala-Zavala JF, Hernández-Paredes J, Salazar-López NJ, Villegas-Ochoa MA, González-Aguilar GA. Avocado paste from industrial byproducts as an unconventional source of bioactive compounds: characterization, in vitro digestion and in silico interactions of its main phenolics with cholesterol. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01117-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Secretan PH, Thirion O, Sadou Yayé H, Damy T, Astier A, Paul M, Do B. Simple Approach to Enhance Green Tea Epigallocatechin Gallate Stability in Aqueous Solutions and Bioavailability: Experimental and Theoretical Characterizations. Pharmaceuticals (Basel) 2021; 14:ph14121242. [PMID: 34959643 PMCID: PMC8706847 DOI: 10.3390/ph14121242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 11/21/2022] Open
Abstract
Because of its antioxidant, antimutagenic, and anti-infectious properties, epigallocatechin gallate (EGCG) is the most interesting compound among the green tea catechins polyphenols. However, its health effects are inconclusive due to its very low bioavailability, largely due to a particular instability that does not allow EGCG to reach the potency required for clinical developments. Over the last decade, many efforts have been made to improve the stability and bioavailability of EGCG using complex delivery systems such as nanotechnology, but these efforts have not been successful and easy to translate to industrial use. To meet the needs of a large-scale clinical trial requiring EGCG in a concentrated solution to anticipate swallowing impairments, we developed an EGCG-based aqueous solution in the simplest way while trying to circumvent EGCG instability. The solution was thoroughly characterized to sort out the unexpected stability outcome by combining experimental (HPLC-UV-mass spectrometry and infrared spectroscopy) and computational (density functional theory) studies. Against all odds, the EGCG–sucrose complex under certain conditions may have prevented EGCG from degradation in aqueous media. Indeed, in agreement with the ICH guidelines, the formulated solution was shown to be stable up to at least 24 months under 2–8 °C and at ambient temperature. Furthermore, considerable improvement in bioavailability in rats, against EGCG powder formulated in hard-gel capsules, was shown after gavage. Thus, the proposed formulation may provide an easily implementable platform to administer EGCG in the context of clinical development.
Collapse
Affiliation(s)
- Philippe-Henri Secretan
- Matériaux et Santé, Université Paris-Saclay, 92296 Châtenay-Malabry, France;
- Correspondence:
| | - Olivier Thirion
- Department of Pharmacy, Hôpitaux Universitaires Henri Mondor, AP-HP, 94000 Créteil, France; (O.T.); (A.A.); (M.P.)
| | - Hassane Sadou Yayé
- Department of Pharmacy, Hôpitaux Universitaires Pitié-Salpêtrière, AP-HP, 75013 Paris, France;
| | - Thibaud Damy
- Département de Cardiologie et des Maladies Vasculaires, Hôpitaux Universitaires Henri Mondor, AP-HP, 94000 Créteil, France;
| | - Alain Astier
- Department of Pharmacy, Hôpitaux Universitaires Henri Mondor, AP-HP, 94000 Créteil, France; (O.T.); (A.A.); (M.P.)
| | - Muriel Paul
- Department of Pharmacy, Hôpitaux Universitaires Henri Mondor, AP-HP, 94000 Créteil, France; (O.T.); (A.A.); (M.P.)
- EpidermE, Université Paris Est Creteil, 94010 Creteil, France
| | - Bernard Do
- Matériaux et Santé, Université Paris-Saclay, 92296 Châtenay-Malabry, France;
- Department of Pharmacy, Hôpitaux Universitaires Henri Mondor, AP-HP, 94000 Créteil, France; (O.T.); (A.A.); (M.P.)
| |
Collapse
|
8
|
Anitha S, Krishnan S, Senthilkumar K, Sasirekha V. A comparative investigation on the scavenging of 2,2-diphenyl-1-picrylhydrazyl radical by the natural antioxidants (+) catechin and (-) epicatechin. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Bakhshi O, Bagherzade G, Ghamari kargar P. Biosynthesis of Organic Nanocomposite Using Pistacia vera L. Hull: An Efficient Antimicrobial Agent. Bioinorg Chem Appl 2021; 2021:4105853. [PMID: 34335708 PMCID: PMC8286193 DOI: 10.1155/2021/4105853] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022] Open
Abstract
Here presented a quick and easy synthesis of copper nanoparticles (CuNPs). Pistachio hull extract has been used as a reducing and stabilizing agent in the preparation of CuNPs. This biosynthesis is a kind of supporter of the environment because chemical agents were not used to making nanoparticles, and on the other hand, it prevents the release of pistachio waste in nature and its adverse effects on nature. The biosynthesized CuNPs and CuNPs/silver Schiff base nanocomposite (CSS NC) were characterized by UV-VIS spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDS). CuNP and CSS NC antimicrobial activity was examined by both well diffusion and determination MIC methods against four bacteria Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa and two fungi Aspergillus Niger and Candida albicans. CuNPs and CSS NC showed significant antimicrobial activity on the samples, preventing the growth of bacteria and fungi at very low concentrations. CuNPs and CSS NC had the greatest effect on Escherichia coli bacteria and Aspergillus niger fungi. Phenolic compounds are one of the most important antioxidants that are involved in various fields, including pharmacy. Pistacia vera hull is a rich source of phenolic compounds. In this study, the most phenolic compound in Pistacia vera hull is gallic acid and rutin, which has been identified by HPLC analysis. In this study, Pistacia vera hull essential oil analysis was performed by the GC-MS method, in which α-pinene, D-limonene, and isobornyl acetate compounds constitute the highest percentage of Pistacia vera hull essential oil.
Collapse
Affiliation(s)
- Omolbanin Bakhshi
- Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand 97175-615, Iran
| | - Ghodsieh Bagherzade
- Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand 97175-615, Iran
| | - Pouya Ghamari kargar
- Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand 97175-615, Iran
| |
Collapse
|