1
|
De Rubis G, Paudel KR, Kokkinis S, El-Sherkawi T, Datsyuk JK, Salunke P, Gerlach J, Dua K. Potent phytoceuticals cocktail exhibits anti-inflammatory and antioxidant activity on LPS-triggered RAW264.7 macrophages in vitro. Pathol Res Pract 2025; 266:155770. [PMID: 39673889 DOI: 10.1016/j.prp.2024.155770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Chronic inflammatory conditions, which include respiratory diseases and other ailments, are characterized by persistent inflammation and oxidative stress, and represent a significant health burden, often inadequately managed by current therapies which include conventional inhaled bronchodilators and oral or inhaled corticosteroids in the case of respiratory disorders. The present study explores the potential of Vedicinals®9 Advanced, a polyherbal formulation, to mitigate LPS-induced inflammation and oxidative stress in RAW264.7 mouse macrophages. The cells were pre-treated with Vedicinals®9 Advanced, followed by exposure to LPS to induce an inflammatory response. Key experimental outcomes were assessed, including nitric oxide (NO) and reactive oxygen species (ROS) production, as well as the expression of inflammatory and oxidative stress-related genes and proteins. Vedicinals®9 Advanced significantly reduced LPS-induced NO and ROS production, indicating strong anti-inflammatory and antioxidant properties. Additionally, the formulation downregulated the LPS-upregulated mRNA expression of pro-inflammatory cytokines, such as TNF-α and CXCL1, and oxidative stress markers, including GSTP1 and NQO1. Furthermore, Vedicinals®9 Advanced downregulated the LPS-induced protein expression of the chemokines CCL2 and CCL6, the LPS co-receptor, CD14, and the pro-inflammatory cytokines G-CSF and IL-1β. These findings highlight the potential of Vedicinals®9 Advanced as a therapeutic option for managing CRDs and other inflammatory conditions. The formulation's ability to simultaneously target inflammation and oxidative stress suggests it may offer advantages over existing treatments, with potential for broader application in inflammatory diseases.
Collapse
Affiliation(s)
- Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Sofia Kokkinis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Tammam El-Sherkawi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Jessica Katrine Datsyuk
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | | | | | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
2
|
Shoaib S, Ansari MA, Kandasamy G, Vasudevan R, Hani U, Chauhan W, Alhumaidi MS, Altammar KA, Azmi S, Ahmad W, Wahab S, Islam N. An Attention towards the Prophylactic and Therapeutic Options of Phytochemicals for SARS-CoV-2: A Molecular Insight. Molecules 2023; 28:795. [PMID: 36677853 PMCID: PMC9864057 DOI: 10.3390/molecules28020795] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
The novel pathogenic virus was discovered in Wuhan, China (December 2019), and quickly spread throughout the world. Further analysis revealed that the pathogenic strain of virus was corona but it was distinct from other coronavirus strains, and thus it was renamed 2019-nCoV or SARS-CoV-2. This coronavirus shares many characteristics with other coronaviruses, including SARS-CoV and MERS-CoV. The clinical manifestations raised in the form of a cytokine storm trigger a complicated spectrum of pathophysiological changes that include cardiovascular, kidney, and liver problems. The lack of an effective treatment strategy has imposed a health and socio-economic burden. Even though the mortality rate of patients with this disease is lower, since it is judged to be the most contagious, it is considered more lethal. Globally, the researchers are continuously engaged to develop and identify possible preventive and therapeutic regimens for the management of disease. Notably, to combat SARS-CoV-2, various vaccine types have been developed and are currently being tested in clinical trials; these have also been used as a health emergency during a pandemic. Despite this, many old antiviral and other drugs (such as chloroquine/hydroxychloroquine, corticosteroids, and so on) are still used in various countries as emergency medicine. Plant-based products have been reported to be safe as alternative options for several infectious and non-infectious diseases, as many of them showed chemopreventive and chemotherapeutic effects in the case of tuberculosis, cancer, malaria, diabetes, cardiac problems, and others. Therefore, plant-derived products may play crucial roles in improving health for a variety of ailments by providing a variety of effective cures. Due to current therapeutic repurposing efforts against this newly discovered virus, we attempted to outline many plant-based compounds in this review to aid in the fight against SARS-CoV-2.
Collapse
Affiliation(s)
- Shoaib Shoaib
- Department Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Geetha Kandasamy
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia
| | - Rajalakshimi Vasudevan
- Department of Pharmacology, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia
| | - Waseem Chauhan
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Maryam S. Alhumaidi
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Khadijah A. Altammar
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Sarfuddin Azmi
- Molecular Microbiology Biology Division, Scientific Research Centre (SRC), Prince Sultan Military Medical City (PSMMC), Riyadh 11159, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Shadma Wahab
- Deparment of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Najmul Islam
- Department Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
3
|
Zhao Y, Deng S, Bai Y, Guo J, Kai G, Huang X, Jia X. Promising natural products against SARS-CoV-2: Structure, function, and clinical trials. Phytother Res 2022; 36:3833-3858. [PMID: 35932157 PMCID: PMC9538226 DOI: 10.1002/ptr.7580] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 01/18/2023]
Abstract
The corona virus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus type 2 (SARS-COV-2) poses a severe threat to human health and still spreads globally. Due to the high mutation ratio and breakthrough infection rate of the virus, vaccines and anti-COVID-19 drugs require continual improvements. Drug screening research has shown that some natural active products can target the critical proteins of SARS-CoV-2, including 3CLpro, ACE2, FURIN, and RdRp, which could produce great inhibitory effects on SARS-COV-2. In addition, some natural products have displayed activities of immunomodulation, antiinflammatory, and antihepatic failure in COVID-19 clinical trials, which may relate to their non-monomeric structures. However, further evaluation and high-quality assessments, including safety verification tests, drug interaction tests, and clinical trials, are needed to substantiate natural products' multi-target and multi-pathway effects on COVID-19. Here, we review the literature on several promising active natural products that may act as vaccine immune enhancers or provide targeted anti-COVID-19 drugs. The structures, mechanisms of action, and research progress of these natural products are analyzed, to hopefully provide effective ideas for the development of targeted drugs that possess better structure, potency, and safety.
Collapse
Affiliation(s)
- Yan Zhao
- Life Science and EngineeringSouthwest Jiaotong UniversityChengduChina
| | - Shanshan Deng
- Sichuan Key Laboratory of Noncoding RNA and DrugsChengdu Medical CollegeChengduChina
| | - Yujiao Bai
- Sichuan Key Laboratory of Noncoding RNA and DrugsChengdu Medical CollegeChengduChina
| | - Jinlin Guo
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest ChinaChengdu University of Traditional Chinese MedicineChengduChina
| | - Guoyin Kai
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xinhe Huang
- Life Science and EngineeringSouthwest Jiaotong UniversityChengduChina
| | - Xu Jia
- Sichuan Key Laboratory of Noncoding RNA and DrugsChengdu Medical CollegeChengduChina
| |
Collapse
|
4
|
Chemical Constituents of Eupatorium japonicum and Anti-Inflammatory, Cytotoxic, and Apoptotic Activities of Eupatoriopicrin on Cancer Stem Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6610347. [PMID: 34055014 PMCID: PMC8149239 DOI: 10.1155/2021/6610347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/18/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022]
Abstract
Eupatorium japonicum Thunb. of the plant family Asteraceae is a popular traditional herb in Vietnam. However, its chemical constituents as well as bioactive principles have not been investigated yet. We investigated the phytochemistry of E. japonicum in Vietnam and isolated seventeen compounds (1–17) including phytosterols, terpenoids, phenolic acids, flavonoids, fatty alcohols, and fatty acids. They were structurally determined by MS and NMR analysis. Except for compounds 6 and 12, all the other compounds were identified for the first time from E. japonicum. Since many sesquiterpene lactones with α-methylene γ-lactone ring are reported as anti-inflammatory and anticancer agents, eupatoriopicrin (10), 1-hydroxy-8-(4,5-dihydroxytigloyloxy)eudesma-4(15),11(13)-dien-6,12-olide (11) were selected among the isolates for biological assays. Compound 10 was identified as the main bioactive sesquiterpene lactone of E. japonicum showing its potent anti-inflammatory and cytotoxic activity through inhibiting NO production and the growth of HepG2 and MCF-7 human cancer cell lines. For the first time, eupatoriopicrin (10) was demonstrated to strongly inhibit NTERA-2 human cancer stem cell (CSC) line in vitro. It is noticeable that the cytotoxicity of eupatoriopicrin against NTERA-2 cells is mediated by its apoptosis-inducing capability of 10 as demonstrated by the results of Hoechst 33342 staining, flow cytometry apoptosis analysis, and caspase-3 activity assays. The biological activities of the main bioactive constituents 1–7, 10, 12, and 15 supported the reported anti-inflammatory and anticancer properties of extracts from E. japonicum.
Collapse
|
5
|
Herrera-Ruiz M, Santillán-Urquiza MA, Romero-Cerecero O, Zamilpa A, Jiménez-Ferrer E, Tortoriello J. Antidepressant-Like Effect of Bauhinia blakeana Dunn in a Neuroinflammation Model in Mice. Med Princ Pract 2020; 29:113-120. [PMID: 31466071 PMCID: PMC7098321 DOI: 10.1159/000502996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 08/29/2019] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To evaluate the antidepressant effect of Bauhinia blakeana and a standardized fraction in the forced swimming test (FST) on mice with neuroinflammation induced with lipopolysaccharides (LPS). MATERIALS AND METHODS Evaluation of the antidepressant effect of Bauhinia blakeana hydroalcoholic extract (BbHA) and its fractions was carried out in behavioral tests on mice with LPS-induced neuroinflammation. RESULTS BbHA had a significant antidepressant effect, measured on healthy mice in the FST. Bio-guided chemical separation of the extract produced a methanolic fraction (BbMe), which decreased the immobility time in FST. In this test, the intraperitoneal administration of LPS induced depression in mice, and BbHA and BbMe counteracted this effect, significantly decreasing the induced depression. Quantification of inflammatory mediators (IL-10, IL-4, IL-6, IL-1β, and TNF-α) in the brain demonstrated that BbHA and BbMe effectively decreased the effect of LPS on the brain concentration of all measured cytokines. CONCLUSIONS Bauhinia blakeana produced an antidepressant effect, while BbMe also exerted a modulating effect, on the damage induced by LPS. Rutin, a glycosylated flavonoid, was identified as the main compound in the active fraction, which could mediate in the antidepressant and immunomodulatory effect.
Collapse
Affiliation(s)
- Maribel Herrera-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Morelos, Mexico
| | | | - Ofelia Romero-Cerecero
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Morelos, Mexico
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Morelos, Mexico
| | - Enrique Jiménez-Ferrer
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Morelos, Mexico
| | - Jaime Tortoriello
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Morelos, Mexico,
| |
Collapse
|
6
|
Asemani Y, Zamani N, Bayat M, Amirghofran Z. Allium vegetables for possible future of cancer treatment. Phytother Res 2019; 33:3019-3039. [DOI: 10.1002/ptr.6490] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/29/2019] [Accepted: 08/10/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Yahya Asemani
- Department of ImmunologyShiraz University of Medical Sciences Shiraz Iran
| | - Nasrindokht Zamani
- Research Center for Persian Medicine and History MedicineShiraz University of Medical Sciences Shiraz Iran
| | - Maryam Bayat
- Department of ImmunologyShiraz University of Medical Sciences Shiraz Iran
| | - Zahra Amirghofran
- Department of ImmunologyShiraz University of Medical Sciences Shiraz Iran
- Autoimmune Diseases Research CenterShiraz University of Medical Sciences Shiraz Iran
- Medicinal and Natural Products Chemistry Research CenterShiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
7
|
The Hydroalcoholic Extract Obtained from Mentha piperita L. Leaves Attenuates Oxidative Stress and Improves Survival in Lipopolysaccharide-Treated Macrophages. J Immunol Res 2017; 2017:2078794. [PMID: 29085843 PMCID: PMC5632461 DOI: 10.1155/2017/2078794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/29/2017] [Accepted: 08/20/2017] [Indexed: 12/12/2022] Open
Abstract
Mentha piperita L. (peppermint) possesses antimicrobial properties, but little is known of its ability to modulate macrophages. Macrophages are essential in bacterial infection control due to their antimicrobial functions and ability to link the innate and adaptive immune responses. We evaluated the effects of the peppermint leaf hydroalcoholic extract (LHAE) on cultured murine peritoneal macrophages stimulated or not with lipopolysaccharide (LPS) in vitro. Vehicle-treated cells were used as controls. The constituents of the extract were also identified. Epicatechin was the major compound detected in the LHAE. LPS-induced macrophage death was reversed by incubation with LHAE (1-30 μg/ml). Higher concentrations of the extract (≥100 μg/ml) decreased macrophage viability (49-57%) in the absence of LPS. LHAE (1-300 μg/ml) attenuated H2O2 (34.6-53.4%) but not nitric oxide production by these cells. At similar concentrations, the extract increased the activity of superoxide dismutase (15.3-63.5-fold) and glutathione peroxidase (34.4-73.6-fold) in LPS-treated macrophages. Only LPS-unstimulated macrophages presented enhanced phagocytosis (3.6-6.6-fold increase) when incubated with LHAE (3-30 μg/ml). Overall, the LHAE obtained from peppermint modulates macrophage-mediated inflammatory responses, by stimulating the antioxidant pathway in these cells. These effects may be beneficial when the excessive activation of macrophages contributes to tissue damage during infectious disease.
Collapse
|
8
|
Shim DW, Han JW, Sun X, Jang CH, Koppula S, Kim TJ, Kang TB, Lee KH. Lysimachia clethroides Duby extract attenuates inflammatory response in Raw 264.7 macrophages stimulated with lipopolysaccharide and in acute lung injury mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:1007-1015. [PMID: 24145006 DOI: 10.1016/j.jep.2013.09.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/13/2013] [Accepted: 09/24/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lysimachia clethroides Duby (LC) is a traditional medicinal herb used to treat edema, hepatitis and inflammatory diseases in China and other Asian countries. In this study, the anti-inflammatory effects of LC extract and the mechanisms underlying were explored in both in vitro cell lines and acute lung injury (ALI) animal model of inflammation in vivo. MATERIALS AND METHODS Lipopolysaccharide (LPS)-stimulated Raw 264.7 murine macrophages were used to study the regulatory effects of LC extract on inflammatory mediators such as nitric oxide (NO) and proinflammatory cytokine expression. Western blotting or ELISA techniques were employed to estimate protein levels. RT-PCR was used for analyzing the interferon (IFN)-β production. LPS-induced ALI mouse model in vivo was employed to study the effect of LC extract. Further high-performance liquid chromatography (HPLC) fingerprinting technique was used to evaluate the active constituents present in LC extract, compared with reference standards. RESULTS Pre-treatment with LC extract inhibited the LPS-stimulated NO release, interleukin (IL)-1β and IL-6 production in Raw 264.7 cells dose dependently. LC extract inhibited the LPS-stimulated IRF3 and STAT1 phosphorylation. Further, in vivo experiments revealed that LC extract suppressed the infiltration of immune cells into the lung and proinflammatory cytokine production in broncho-alveolar lavage fluid (BALF) in the LPS-induced ALI mouse model. CONCLUSIONS Our results indicate that LC extract attenuates LPS-stimulated inflammatory responses in macrophages via regulating the key inflammatory mechanisms, providing a scientific support for its traditional use in treating various inflammatory diseases.
Collapse
Affiliation(s)
- Do-Wan Shim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Diseases, Konkuk University, Chungju 380-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Baintner K. Suppression of ConA-induced inflammatory ascites by lipopolysaccharide (LPS) in mice. Acta Microbiol Immunol Hung 2012; 59:387-92. [PMID: 22982642 DOI: 10.1556/amicr.59.2012.3.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of pre-treatment with Escherichia coli O83 lipopolysaccharide (LPS) on concanavalin A-induced ascites was examined. The LPS was injected intraperitoneally (i.p.) in different doses to mice, and then ascites was induced by i.p. administration of concanavalin A (ConA) (25 mg/kg b.w.). After 2.5 h the mice were killed and the ascitic fluid was collected and measured. The LPS produced a marked and dose-dependent inhibition of ConA-induced ascites and the effect of pre-treatment lasted up to almost a week. Complete inhibition could not be achieved. If administered alone, LPS did not produce ascites.It is well known that LPS enhances vascular permeability in several tissues, but the present work shows that peritoneal permeability is not enhanced by this agent. Suppression of ConA-induces ascites may be explained by the hypotonic effect of LPS.
Collapse
Affiliation(s)
- Károly Baintner
- 1 University of Kaposvár Department of Physiology, Faculty of Animal Science Kaposvár Hungary
| |
Collapse
|
10
|
|
11
|
HANIEH H, NARABARA K, TANAKA Y, GU Z, ABE A, KONDO Y. Immunomodulatory effects of Alliums and Ipomoea batata extracts on lymphocytes and macrophages functions in White Leghorn chickens: In vitro study. Anim Sci J 2011; 83:68-76. [DOI: 10.1111/j.1740-0929.2011.00918.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
González R, Ballester I, López-Posadas R, Suárez MD, Zarzuelo A, Martínez-Augustin O, Sánchez de Medina F. Effects of flavonoids and other polyphenols on inflammation. Crit Rev Food Sci Nutr 2011; 51:331-62. [PMID: 21432698 DOI: 10.1080/10408390903584094] [Citation(s) in RCA: 366] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flavonoids are a family of polyphenolic compounds which are widespread in nature (vegetables) and are consumed as part of the human diet in significant amounts. There are other types of polyphenols, including, for example, tannins and resveratrol. Flavonoids and related polyphenolic compounds have significant antiinflammatory activity, among others. This short review summarizes the current knowledge on the effects of flavonoids and related polyphenolic compounds on inflammation, with a focus on structural requirements, the mechanisms involved, and pharmacokinetic considerations. Different molecular (cyclooxygenase, lipoxygenase) and cellular targets (macrophages, lymphocytes, epithelial cells, endothelium) have been identified. In addition, many flavonoids display significant antioxidant/radical scavenging properties. There is substantial structural variation in these compounds, which is bound to have an impact on their biological profile, and specifically on their effects on inflammatory conditions. However, in general terms there is substantial consistency in the effects of these compounds despite considerable structural variations. The mechanisms have been studied mainly in myeloid cells, where the predominant effect is an inhibition of NF-κB signaling and the downregulation of the expression of proinflammatory markers. At present there is a gap in knowledge of in vitro and in vivo effects, although the pharmacokinetics of flavonoids has advanced considerably in the last decade. Many flavonoids have been studied for their intestinal antiinflammatory activity which is only logical, since the gastrointestinal tract is naturally exposed to them. However, their potential therapeutic application in inflammation is not restricted to this organ and extends to other sites and conditions, including arthritis, asthma, encephalomyelitis, and atherosclerosis, among others.
Collapse
Affiliation(s)
- R González
- Department of Pharmacology, CIBERehd, School of Pharmacy, University of Granada, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|