1
|
Nguyen TA, Chen RH, Hawkins BA, Hibbs DE, Kim HY, Wheate NJ, Groundwater PW, Stocker SL, Alffenaar JWC. Can we Predict Drug Excretion into Saliva? A Systematic Review and Analysis of Physicochemical Properties. Clin Pharmacokinet 2024; 63:1067-1087. [PMID: 39008243 PMCID: PMC11343830 DOI: 10.1007/s40262-024-01398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND AND OBJECTIVES Saliva is a patient-friendly matrix for therapeutic drug monitoring (TDM) but is infrequently used in routine care. This is due to the uncertainty of saliva-based TDM results to inform dosing. This study aimed to retrieve data on saliva-plasma concentration and subsequently determine the physicochemical properties that influence the excretion of drugs into saliva to increase the foundational knowledge underpinning saliva-based TDM. METHODS Medline, Web of Science and Embase (1974-2023) were searched for human clinical studies, which determined drug pharmacokinetics in both saliva and plasma. Studies with at least ten subjects and five paired saliva-plasma concentrations per subject were included. For each study, the ratio of the area under the concentration-time curve between saliva and plasma was determined to assess excretion into saliva. Physicochemical properties of each drug (e.g. pKa, lipophilicity, molecular weight, polar surface area, rotatable bonds and fraction of drug unbound to plasma proteins) were obtained from PubChem and Drugbank. Drugs were categorised by their ionisability, after which saliva-to-plasma ratios were predicted with adjustment for protein binding and physiological pH via the Henderson-Hasselbalch equation. Spearman correlation analyses were performed for each drug category to identify factors predicting saliva excretion (α = 5%). Study quality was assessed by the risk of bias in non-randomised studies of interventions tool. RESULTS Overall, 42 studies including 40 drugs (anti-psychotics, anti-microbials, immunosuppressants, anti-thrombotic, anti-cancer and cardiac drugs) were included. The median saliva-to-plasma ratios were similar for drugs in the amphoteric (0.59), basic (0.43) and acidic (0.41) groups and lowest for drugs in the neutral group (0.21). Higher excretion of acidic drugs (n = 5) into saliva was associated with lower ionisation and protein binding (correlation between predicted versus observed saliva-to-plasma ratios: R2 = 0.85, p = 0.02). For basic drugs (n = 21), pKa predicted saliva excretion (Spearman correlation coefficient: R = 0.53, p = 0.02). For amphoteric drugs (n = 10), hydrogen bond donor (R = - 0.76, p = 0.01) and polar surface area (R = - 0.69, p = 0.02) were predictors. For neutral drugs (n = 10), protein binding (R = 0.84, p = 0.004), lipophilicity (R = - 0.65, p = 0.04) and hydrogen bond donor count (R = - 0.68, p = 0.03) were predictors. Drugs considered potentially suitable for saliva-based TDM are phenytoin, tacrolimus, voriconazole and lamotrigine. The studies had a low-to-moderate risk of bias. CONCLUSIONS Many commonly used drugs are excreted into saliva, which can be partly predicted by a drug's ionisation state, protein binding, lipophilicity, hydrogen bond donor count and polar surface area. The contribution of drug transporters and physiological factors to the excretion needs to be evaluated. Continued research on drugs potentially suitable for saliva-based TDM will aid in adopting this person-centred TDM approach to improve patient outcomes.
Collapse
Affiliation(s)
- Thi A Nguyen
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia.
- Westmead Hospital, Sydney, NSW, Australia.
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia.
| | - Ricky H Chen
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia
- Department of Pharmacy, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Bryson A Hawkins
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia
- Department of Biology, Antimicrobial Discovery Centre, Northeastern University, Boston, MA, USA
| | - David E Hibbs
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia
| | - Hannah Y Kim
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Sydney, NSW, Australia
| | - Nial J Wheate
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Paul W Groundwater
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia
| | - Sophie L Stocker
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Sydney, NSW, Australia
- Department of Clinical Pharmacology and Toxicology, St Vincent's Hospital, Sydney, NSW, Australia
- Sydney Musculoskeletal Health, The University of Sydney, Sydney, NSW, Australia
| | - Jan-Willem C Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Sydney, NSW, Australia
| |
Collapse
|
2
|
Nieves E, Cimino R, Krolewiecki A, Juarez M, Lanusse C, Alvarez L, Ceballos L. Albendazole metabolites excretion in human saliva as a biomarker to assess treatment compliance in mass drug administration (MDA) anthelmintic programs. Sci Rep 2024; 14:6271. [PMID: 38491091 PMCID: PMC10943003 DOI: 10.1038/s41598-024-56804-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Soil-transmitted-helminth (STH) infections continue to be a persistent global public health problem. Control strategies for STH have been based on the use of mass drug administration (MDA). Coverage and compliance assessment is critical to understanding the true effectiveness of albendazole (ABZ) in those MDA programs. The aims of this work were to characterize the pattern of albendazole and metabolites excretion in human saliva, and to develop a saliva-based biomarker (HPLC drug/metabolite detection) useful to accurately estimate the coverage/compliance in MDA campaigns. The study subjects were 12 healthy volunteers treated with a single oral dose of ABZ (400 mg). Saliva and blood (dried blood spot, DBS) samples were taken previously and between 2 and 72 h post-treatment. The samples were analyzed by HPLC with UV detection, C18 reversed-phase column. ABZ sulphoxide was the main analyte recovered up to 72 h p.t. in blood and saliva. The concentration profiles measured in the blood (DBS samples) were higher (P < 0.05) than those in saliva, however, this ABZ-metabolite was recovered longer in saliva. The in vivo measurement of drugs/metabolites in saliva samples from ABZ-treated volunteers offers strong scientific evidence to support the use of saliva as a valid biological sample for assessing compliance in MDA programs.
Collapse
Affiliation(s)
- E Nieves
- Facultad Regional Orán, Instituto de Investigaciones de Enfermedades Tropicales, Universidad Nacional de Salta, Orán, Salta, Argentina
| | - R Cimino
- Facultad Regional Orán, Instituto de Investigaciones de Enfermedades Tropicales, Universidad Nacional de Salta, Orán, Salta, Argentina
| | - A Krolewiecki
- Facultad Regional Orán, Instituto de Investigaciones de Enfermedades Tropicales, Universidad Nacional de Salta, Orán, Salta, Argentina
| | - M Juarez
- Facultad Regional Orán, Instituto de Investigaciones de Enfermedades Tropicales, Universidad Nacional de Salta, Orán, Salta, Argentina
| | - C Lanusse
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
| | - L Alvarez
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
| | - L Ceballos
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina.
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina.
| |
Collapse
|