1
|
Iweala EJ, Okore FU, Okoro BC, Dania OE, Amuji DN, Ugbogu EA. Phytochemical composition, acute and subacute toxicity profile of Persea amaricana seed oil in albino Wistar rats. Toxicol Rep 2025; 14:101982. [PMID: 40129882 PMCID: PMC11930742 DOI: 10.1016/j.toxrep.2025.101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/26/2025] Open
Abstract
Objective This study investigated the phytochemical composition and toxicity profile of Persea americana seed oil (PASO) in albino Wistar rats. Methods Chromatography-mass spectrometry (GC-MS) was used to analyse the chemical constituents of PASO. For the acute toxicity test, PASO was administered orally in a single dose of up to 3000 mg/kg body weight (bw). For the subacute toxicity test, the rats were divided into four (4) groups. Group I (normal control), while groups II, III and IV received 200, 300 and 400 mg/kg PASO daily, respectively, for 14 days. Results In the acute toxicity test, the lethal dose (LD50) of PASO was estimated to be 1477.83 mg/kg. In the subacute toxicity test, PASO significantly increased (p < 0.05) aspartate aminotransferase, creatine phosphokinase, alanine aminotransferase, creatinine, alkaline phosphatase, urea, malondialdehyde, high density lipoprotein, interleukin 1-beta (IL-1β), tumour necrosis factor (TNF-α) and cardiac troponin and significantly decreased glutathione, red blood cells (RBC), packed cell volume (PCV), superoxide dismutase and catalase compared to the control group. Conclusion Our study showed that the LD50 of PASO is 1477.83 mg/kg body weight, which classifies it as a moderately toxic substance. In subacute toxicity, our results revealed that treatment with PASO resulted in an increase in liver enzymes, urea and creatinine, and inflammatory markers, and a decrease in antioxidant enzymes, suggesting that PASO impairs liver and kidney functions and may cause cardiac or muscle damage in albino Wistar rats.
Collapse
Affiliation(s)
- Emeka Joshua Iweala
- Department of Biochemistry, Covenant University, PMB 1023, Ota, Ogun State, Nigeria
| | - Finian Uchenna Okore
- Department of Biochemistry, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | | | | | - Doris Nnenna Amuji
- Department of Biochemistry, Covenant University, PMB 1023, Ota, Ogun State, Nigeria
| | | |
Collapse
|
2
|
Umeh NE, Onuorah RT, Ekweogu CN, Ijioma SN, Egeduzu OG, Nwaru EC, Iweala EJ, Ugbogu EA. Chemical profiling, toxicity assessment, anti-diarrhoeal, anti-inflammatory and antinociceptive activities of Canarium schweinfurthii Engl. (Burseraceae) bark in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118460. [PMID: 38878840 DOI: 10.1016/j.jep.2024.118460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The bark of Canarium schweinfurthii is used in ethnomedicine for the treatment of diabetes, pain, malaria, fever and diarrhoea. AIM OF THE STUDY The chemical phytoconstituents, antidiarrheal, anti-inflammatory and antinociceptive effects and safety profile of the aqueous extract of Canarium schweinfurthii bark (AECSB) were investigated. MATERIALS AND METHODS Gas chromatography-mass spectrometry (GC-MS) was used to analyse the phytochemical composition. In the acute toxicity test, AECSB were administered up to 2 g/kg by oral gavage. For the subacute toxicity test (28 days), rats in group 1 (control) received no AECSB, while rats in groups 2-4 were administered different doses of AECSB. Charcoal meal transit and castor oil-induced diarrhoea models were used to study the antidiarrheal effect, while egg albumin/carrageenan and acetic acid/tail immersion models were used for the anti-inflammatory and antinociceptive studies, respectively. With the exception of the acute toxicity experiment, AECSB was administered orally at doses of 200, 400 and 800 mg/kg. RESULTS Bioactive phytoconstituents identified include p-cymene, δ-terpinene, linalool and phytol. No adverse effects or mortality were observed in acute and subacute studies. Treatment with AECSB (28 days) had no significant effect on organ weight, biochemical, hematologic and histopathologic parameters compared to the control groups (p > 0.05). Comparable antidiarrheal and antinociceptive effects were observed in both AECSB- and standard drug-treated groups, while the 400 and 800 mg/kg AECSB-treated groups showed remarkable anti-inflammatory effects compared to the standard drug-treated and control groups (p < 0.05). CONCLUSION AECSB has antidiarrheal, antinociceptive and anti-inflammatory effects and can be safely used for therapeutic purposes.
Collapse
Affiliation(s)
- Nkiruka Edith Umeh
- Department of Biochemistry Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | | | - Celestine Nwabu Ekweogu
- Department of Medical Biochemistry, Imo State University, PMB 2000, Owerri, Imo State, Nigeria
| | - Solomon Nnah Ijioma
- Department of Zoology and Environmental Biology, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Ozioma Glory Egeduzu
- Department of Biochemistry Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | - Ezeibe Chidi Nwaru
- Department of Plant Science and Biotechnology, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | - Emeka Joshua Iweala
- Department of Biochemistry, Covenant University, PMB 1023, Ota, Ogun State, Nigeria
| | | |
Collapse
|
3
|
Curtis RM, Wang HS, Luo X, Dugo EB, Stevens JJ, Tchounwou PB. Fractionated Leaf Extracts of Ocimum gratissimum Inhibit the Proliferation and Induce Apoptosis of A549 Lung Adenocarcinoma Cells. Nutrients 2024; 16:2737. [PMID: 39203873 PMCID: PMC11357273 DOI: 10.3390/nu16162737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Previous in vitro studies in our laboratory demonstrated that ethyl acetate (P2) and water- soluble (PS/PT1) fractionated leaf extracts of Ocimum gratissimum inhibit the proliferation of prostate cancer cells. It has been reported that the crude aqueous extract induces apoptosis in lung adenocarcinoma cells; however, the efficacy of the fractionated extracts against these cells remains unclear. In the present study, we hypothesized that the ability of the fractionated extracts to inhibit proliferation and induce apoptosis is associated with the activation of pro-apoptotic proteins and induction of DNA condensation in A549 cells. Ocimum gratissimum was cultivated and its leaves were harvested, extracted, and fractionated to produce fractions P2 and PS/PT1. Anti-proliferative activity was assessed by direct cell count. For morphological characterization of apoptosis, 4',6-diamidino-2-phenylindole staining was employed. Western blot analysis was performed to evaluate the apoptotic activity of the fractionated extracts. In data generated from anti-proliferation studies, P2 significantly inhibited cell proliferation in a concentration-dependent manner; PS/PT1 elicited a decrease in the viability of cells, occurring at 500 µg/mL. 4',6-diamidino-2-phenylindole staining revealed the induction of apoptosis, as evidenced by the formation of apoptotic bodies. Increased levels of pro-apoptotic proteins were observed as the concentrations of the fractionated extracts increased. These results suggest that fractionated leaf extracts of Ocimum gratissimum inhibit the proliferation and induce apoptosis of A549 cells.
Collapse
Affiliation(s)
- Rachael M. Curtis
- College of Science, Engineering, and Technology, Jackson State University, 1400 JR Lynch Street, Jackson, MS 39217, USA; (J.J.S.); (P.B.T.)
| | - Heng-Shan Wang
- School of Chemistry and Pharmacy, Guangxi Normal University, No. 15 Yu Cai Road, Guilin 541004, China
| | - Xuan Luo
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Guangxi University, No. 100 East Daxue Road, Nanning 530004, China
| | - Erika B. Dugo
- Department of Natural and Behavioral Sciences, College of Science, Technology, Engineering, and Mathematics, Johnson C. Smith University, 100 Beatties Ford Road, Charlotte, NC 28216, USA
| | - Jacqueline J. Stevens
- College of Science, Engineering, and Technology, Jackson State University, 1400 JR Lynch Street, Jackson, MS 39217, USA; (J.J.S.); (P.B.T.)
| | - Paul B. Tchounwou
- College of Science, Engineering, and Technology, Jackson State University, 1400 JR Lynch Street, Jackson, MS 39217, USA; (J.J.S.); (P.B.T.)
- RCMI Center for Urban Health Disparities Research and Innovation, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, MD 21252, USA
| |
Collapse
|
4
|
Chen JH, Lin TH, Chien YC, Chen CY, Lin CT, Kuo WW, Chang WC. Aqueous Extracts of Ocimum gratissimum Sensitize Hepatocellular Carcinoma Cells to Cisplatin through BRCA1 Inhibition. Int J Mol Sci 2024; 25:8424. [PMID: 39125994 PMCID: PMC11313253 DOI: 10.3390/ijms25158424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Ocimum gratissimum (O. gratissimum), a medicinal herb with antifungal and antiviral activities, has been found to prevent liver injury and liver fibrosis and induce apoptosis in hepatocellular carcinoma (HCC) cells. In this study, we evaluated the effect of aqueous extracts of O. gratissimum (OGE) on improving the efficacy of chemotherapeutic drugs in HCC cells. Proteomic identification and functional assays were used to uncover the critical molecules responsible for OGE-induced sensitization mechanisms. The antitumor activity of OGE in combination with a chemotherapeutic drug was evaluated in a mouse orthotopic tumor model, and serum biochemical tests were further utilized to validate liver function. OGE sensitized HCC cells to the chemotherapeutic drug cisplatin. Proteomic analysis and Western blotting validation revealed the sensitization effect of OGE, likely achieved through the inhibition of breast cancer type 1 susceptibility protein (BRCA1). Mechanically, OGE treatment resulted in BRCA1 protein instability and increased proteasomal degradation, thereby synergistically increasing cisplatin-induced DNA damage. Moreover, OGE effectively inhibited cell migration and invasion, modulated epithelial-to-mesenchymal transition (EMT), and impaired stemness properties in HCC cells. The combinatorial use of OGE enhanced the efficacy of cisplatin and potentially restored liver function in a mouse orthotopic tumor model. Our findings may provide an alternate approach to improving chemotherapy efficacy in HCC.
Collapse
Affiliation(s)
- Jing-Huei Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan; (J.-H.C.); (Y.-C.C.)
| | - Tsai-Hui Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404327, Taiwan;
| | - Yu-Chuan Chien
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan; (J.-H.C.); (Y.-C.C.)
| | - Chung-Yu Chen
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan; (C.-Y.C.); (C.-T.L.)
| | - Chih-Tung Lin
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan; (C.-Y.C.); (C.-T.L.)
| | - Wei-Wen Kuo
- Program for Biotechnology Industry, China Medical University, Taichung 406040, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung 406040, Taiwan
| |
Collapse
|
5
|
Chatterjee A, Sarkar B. Polyphenols and terpenoids derived from Ocimum species as prospective hepatoprotective drug leads: a comprehensive mechanistic review. PHYTOCHEMISTRY REVIEWS 2024. [DOI: 10.1007/s11101-024-09992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/28/2024] [Indexed: 01/03/2025]
|
6
|
Ekweogu CN, Akubugwo EI, Emmanuel O, Nosiri CI, Uche ME, Adurosakin OE, Ijioma SN, Ugbogu EA. Phytochemical profiling, toxicity studies, wound healing, analgesic and anti-inflammatory activities of Musa paradisiaca L. Musaceae (Plantain) stem extract in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117639. [PMID: 38135229 DOI: 10.1016/j.jep.2023.117639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/02/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The stem of Musa paradisiaca (plantain) has found application in traditional medicine for the treatment of diabetes, inflammation, ulcers and wound injuries. AIM OF THE STUDY This study investigated the phytochemical composition, toxicity profile, wound healing, anti-inflammatory and analgesic effects of aqueous Musa paradisiaca stem extract (AMPSE) in rats. METHODS Phytochemical analysis of methanol-MPSE was performed by gas chromatography-mass spectrometry (GC-MS). Acute toxicity testing was carried out through oral administration of a single dose of AMPSE up to 5 g/kg. Four separate groups of rats were used for the subacute toxicity testing (n = 6). Group 1 served as a normal control and did not receive AMPSE, groups 2-4 received AMPSE daily by gavage for 28 days. In the experiments with excision and incision wounds, the rats were treated with 10 w/w AMPS extract. The anti-inflammatory and analgesic effects of AMPSE were assessed using egg albumin-induced paw oedema and acetic acid-induced writhing methods, respectively. For the subacute, anti-inflammatory and analgesic studies, AMPSE was administered to the experimental rats at doses of 300, 600 and 900 mg/kg body weight. RESULTS Bioactive compounds identified include β-sitisterol, n-hexadecanoic acid, octadecanoic acid, diethyl sulfate, p-hydroxynorephedrine, phenylephrine, nor-pseudoephedrine, metaraminol, pseudoephedrine and vanillic acid. No signs of toxicity and no deaths were observed in all the groups. For the groups treated with AMPSE for 28 days, a significant reduction in alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, urea, sodium, chloride, total cholesterol, triglycerides, and low-density lipoprotein cholesterol were observed while high density lipoprotein cholesterol, glutathione and superoxide dismutase increased compared to control (p < 0.05). In wound healing experiments, AMPSE showed greater percent wound contraction and wound resistance fracture compared to the povidone-iodine (PI) treated and control groups. Treatment with 900 mg/kg AMPSE resulted in significant (p < 0.05) anti-inflammatory and analgesic effects compared to the control. CONCLUSION This study shows that AMPSE is not toxic but contains biologically active compounds with hepatoprotective, anti-inflammatory, lipid-lowering and wound-healing effects. Treatment of rats with AMPSE has shown that AMPSE has anti-inflammatory, analgesic, hepatoprotective, lipid-lowering and wound-healing effects, supporting its therapeutic use in ethnomedicine.
Collapse
Affiliation(s)
| | | | - Okezie Emmanuel
- Department of Biochemistry Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | - Chidi Ijeoma Nosiri
- Department of Biochemistry Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | - Mercylyn Ezinne Uche
- Department of Biochemistry Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | | | - Solomon Nnah Ijioma
- Department of Zoology and Environmental Biology, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Nigeria
| | | |
Collapse
|
7
|
Ugbogu EA, Okoro H, Emmanuel O, Ugbogu OC, Ekweogu CN, Uche M, Dike ED, Ijioma SN. Phytochemical characterization, anti-diarrhoeal, analgesic, anti-inflammatory activities and toxicity profile of Ananas comosus (L.) Merr (pineapple) leaf in albino rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117224. [PMID: 37748634 DOI: 10.1016/j.jep.2023.117224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ananas comosus (pineapple) leaf is used in ethnomedicine to treat diarrhoea, inflammation, pain, bacterial infections and oedema. AIM OF THE STUDY The aim of this study was to investigate the anti-diarrhoeal, anti-inflammatory and analgesic effects as well as the toxicity profile of the aqueous Ananas comosus leaf extract (AACLE) in rats. METHODS Methanol ACLE was subjected to gas chromatography-mass spectrometry (GC-MS) analysis. In the acute toxicity study, a single oral dose of up to 5000 mg/kg AACLE was administered. In the subacute toxicity study (28 days), rats in groups 2-4 received AACLE orally. The anti-diarrhoeal effect was studied using charcoal meal and castor oil-induced diarrhoea. Anti-inflammatory and analgesic tests were measured using egg albumin-induced paw oedema and acetic acid-induced writhing methods, respectively. For the subacute toxicity, anti-diarrhoeal, analgesic, and anti-inflammatory studies, AACLE was administered orally to rats at doses of 200, 400, and 600 mg/kg body weight. RESULTS Hexadecanoic acid methyl ester, 2-methoxy-4-vinylphenol, n-hexadecanoic acid and n-heptadecanol-1 were identified among other compounds with known pharmacological activities by GC-MS analysis. No deaths, behavioural changes, or signs of toxicity were observed in the acute toxicity study. Treatment with AACLE (28 days) decreased aspartate aminotransferase, alanine transaminase, total cholesterol, triglycerides, and low-density lipoprotein cholesterol, while high-density lipoprotein cholesterol, glutathione, and catalase increased when compared with control (P < 0.05). Treatment with AACLE did not cause significant changes in haematological or renal function parameters. Treatment with AACLE inhibited gastrointestinal motility and castor oil-induced diarrhoea in rats. Treatment with AACLE resulted in a dose-dependent (200-600 mg/kg) significant (P < 0.05) anti-diarrhoeal, analgesic, and anti-inflammatory effect compared to standard drugs. CONCLUSION Our study revealed that ACLE is not toxic but contains bioactive compounds with anti-diarrhoeal, anti-inflammatory, antimicrobial, and hepatoprotective activity. AACLE has antidiarrhoeal, analgesic and anti-inflammatory activity in rats, which justifies its therapeutic use in traditional medicine.
Collapse
Affiliation(s)
- Eziuche Amadike Ugbogu
- Department of Biochemistry, Abia State University, PMB 2000, Uturu, Abia State, Nigeria.
| | - Happiness Okoro
- Department of Biochemistry, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | - Okezie Emmanuel
- Department of Biochemistry, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | | | - Celestine Nwabu Ekweogu
- Department of Medical Biochemistry, Imo State University, PMB 2000, Owerri, Imo State, Nigeria
| | - Miracle Uche
- Department of Biochemistry, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | - Emmanuel Dike Dike
- Department of Biochemistry, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | - Solomon Nnah Ijioma
- Department of Zoology and Environmental Biology, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Nigeria
| |
Collapse
|
8
|
Dharsono HDA, Putri SA, Kurnia D, Dudi D, Satari MH. Ocimum Species: A Review on Chemical Constituents and Antibacterial Activity. Molecules 2022; 27:6350. [PMID: 36234883 PMCID: PMC9573401 DOI: 10.3390/molecules27196350] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 12/08/2022] Open
Abstract
Infection by bacteria is one of the main problems in health. The use of commercial antibiotics is still one of the treatments to overcome these problems. However, high levels of consumption lead to antibiotic resistance. Several types of antibiotics have been reported to experience resistance. One solution that can be given is the use of natural antibacterial products. There have been many studies reporting the potential antibacterial activity of the Ocimum plant. Ocimum is known to be one of the medicinal plants that have been used traditionally by local people. This plant contains components of secondary metabolites such as phenolics, flavonoids, steroids, terpenoids, and alkaloids. Therefore, in this paper, we will discuss five types of Ocimum species, namely O. americanum, O. basilicum, O. gratissimum, O. campechianum, and O. sanctum. The five species are known to contain many chemical constituents and have good antibacterial activity against several pathogenic bacteria.
Collapse
Affiliation(s)
- Hendra Dian Adhita Dharsono
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Salsabila Aqila Putri
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Dudi Dudi
- Department of Livestock Production, Faculty of Animal Husbandry, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Mieke Hemiawati Satari
- Department of Oral Biology, Faculty of Dentistry, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| |
Collapse
|
9
|
The effects of aqueous extract of ocimum gratissimum on the cerebellum of male wistar rats challenged by lead acetate. CLINICAL NUTRITION OPEN SCIENCE 2022. [DOI: 10.1016/j.nutos.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Kanu C S, Aloke C, Elom I N, Eleazu O C. Effects of co-treatment of Plasmodium berghei-infected mice with aqueous extract of Ocimum gratissimum leaves and primaquine on glucose-6-phosphate dehydrogenase activity, hematological, and antioxidant parameters. J Ayurveda Integr Med 2022; 13:100656. [PMID: 36399959 PMCID: PMC9673106 DOI: 10.1016/j.jaim.2022.100656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND It has been observed that most malaria patients especially G6PD-deficient patients usually experience oxidative stress and severe anemia when treated with primaquine. This calls for the need to search for a treatment option that will ameliorate these side effects. OBJECTIVE The effect of co-treatment of malaria with aqueous extract of Ocimum gratissimum leaves (AEOGL) and primaquine on G6PD activity, antioxidant indices and hematological parameters in Plasmodium berghei-infected mice was investigated. MATERIALS AND METHODS Thirty mice divided into six groups of five mice each were recruited for this study. Whilst Group 1 (G1) served as the negative control (group not infected with plasmodium parasite), Groups 2 to 6 (G2-G6) were inoculated intraperitoneally with 0.2 ml of 1 × 105/ml Plasmodium berghei (NK 65 strain) infected erythrocytes. G2 (parasite control) received no treatment. Groups 3,4,5 and 6 were administered 0.25 mg/kg bw of primaquine only; 100 mg/kg b. w of AEOGL +0.25 mg/kg bw of primaquine; 200 mg/kg b. w of AEOGL +0.25 mg/kg bw of primaquine; 200 mg/kg b. w of AEOGL respectively, for 14 days. RESULTS Treatment with only primaquine gave the highest mean malaria parasite clearance (82.10 ± 0.45 percent), followed by 100 mg/kg b. w of AEOGL + Primaquine (75.59 ± 0.47 percent), 200 mg/kg b. w of AEOGL + Primaquine (67.35 ± 0.67 percent), and AEOGL alone (55 ± 0.56 percent). In comparison with the untreated malaria groups, co-treatment with AEOGL + Primaquine produced a significant (p < 0.05) increase in G6PD activity, serum ascorbate, reduced glutathione, catalase activity, and a significant (p < 0.05) decrease in malondialdehyde level in a dose-dependent pattern and also a significant (p < 0.05) rise in packed cell volume, haemoglobin, and red blood cell count, unlike treatment with only primaquine which resulted in a non-significant (P > 0.05) difference in these parameters. CONCLUSION Co-treatment of Plasmodium berghei-infected mice with AEOGL and primaquine improved the G6PD activity, hematological parameters and antioxidant status relative to treatment with only primaquine.
Collapse
Affiliation(s)
- Shedrach Kanu C
- Department of Biochemistry, Alex-Ekwueme Federal University Ndufu-Alike, Ikwo, Ebonyi State, Nigeria,Corresponding author.
| | - Chinyere Aloke
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Abakaliki, Ebonyi State, Nigeria,Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa
| | - Nwabueze Elom I
- Department of Chemistry, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| | - Chinedum Eleazu O
- Department of Biochemistry, Alex-Ekwueme Federal University Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| |
Collapse
|