1
|
Xie S, Zhu X, Han F, Wang S, Cui K, Xue J, Xi X, Shi C, Li S, Wang F, Tian J. Discussion on the comparison of Raman spectroscopy and cardiovascular disease-related imaging techniques and the future applications of Raman technology: a systematic review. Lasers Med Sci 2025; 40:116. [PMID: 39988624 PMCID: PMC11847755 DOI: 10.1007/s10103-025-04315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/23/2025] [Indexed: 02/25/2025]
Abstract
Cardiovascular disease (CVD) is a major cause of unnatural death worldwide, so timely diagnosis of CVD is crucial for improving patient outcomes. Although the traditional diagnostic tools can locate plaque and observe inner wall of blood vessel structure, they commonly have radioactivity and cannot detect the chemical composition of the plaque accurately. Recently emerging Raman techniques can detect the plaque composition precisely, and have the advantages of being fast, high-resolution and marker-free. This makes Raman have great potential for detecting blood samples, understanding disease conditions, and real-time monitoring. This review summarizes the origin and state-of-art of Raman techniques, including the following aspects: (a) the principle and technical classification of Raman techniques; (b) the applicability of Raman techniques and its comparison with traditional diagnostic tools at different diagnosis targets; (c) the applicability of Raman spectroscopy in advanced CVD. Lastly, we highlight the possible future applications of Raman techniques in CVD diagnosis.
Collapse
Affiliation(s)
- Songcai Xie
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaotong Zhu
- Wuhan National Laboratory for Optoelectronics, Hua zhong Univeresity of Science and Technology, Wuhan, China
| | - Feiyuan Han
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shengyuan Wang
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kexin Cui
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Xue
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangwen Xi
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengyu Shi
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuo Li
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fan Wang
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China.
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jinwei Tian
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China.
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Pence IJ, Evans CL. Translational biophotonics with Raman imaging: clinical applications and beyond. Analyst 2021; 146:6379-6393. [PMID: 34596653 PMCID: PMC8543123 DOI: 10.1039/d1an00954k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/30/2021] [Indexed: 01/25/2023]
Abstract
Clinical medicine continues to seek novel rapid non-invasive tools capable of providing greater insight into disease progression and management. Raman scattering based technologies constitute a set of tools under continuing development to address outstanding challenges spanning diagnostic medicine, surgical guidance, therapeutic monitoring, and histopathology. Here we review the mechanisms and clinical applications of Raman scattering, specifically focusing on high-speed imaging methods that can provide spatial context for translational biomedical applications.
Collapse
Affiliation(s)
- Isaac J Pence
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA.
| | - Conor L Evans
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA.
| |
Collapse
|
3
|
Evaluation of Diagnostic Accuracy Following the Coadministration of Delta-Aminolevulinic Acid and Second Window Indocyanine Green in Rodent and Human Glioblastomas. Mol Imaging Biol 2020; 22:1266-1279. [PMID: 32514886 DOI: 10.1007/s11307-020-01504-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE Fluorescence-guided-surgery offers intraoperative visualization of neoplastic tissue. Delta-aminolevulinic acid (5-ALA), which targets enzymatic abnormality in neoplastic cells, is the only approved agent for fluorescence-guided neurosurgery. More recently, we described Second Window Indocyanine Green (SWIG) which targets neoplastic tissue through enhanced vascular permeability. We hypothesized that SWIG would demonstrate similar clinical utility in identification of high-grade gliomas compared with 5-ALA. PROCEDURES Female C57/BL6 and nude/athymic mice underwent intracranial implantation of 300,000 GL261 and U87 cells, respectively. Tumor-bearing mice were euthanized after administration of 5-ALA (200 mg/kg intraperitoneal) and SWIG (5 mg/kg intravenous). Brain sections were imaged for protoporphyrin-IX and ICG fluorescence. Fluorescence and H&E images were registered using semi-automatic scripts for analysis. Human subjects with HGG were administered SWIG (2.5 mg/kg intravenous) and 5-ALA (20 mg/kg oral). Intraoperatively, tumors were imaged for ICG and protoporphyrin-IX fluorescence. RESULTS In non-necrotic tumors, 5-ALA and SWIG demonstrated 90.2 % and 89.2 % tumor accuracy (p value = 0.52) in U87 tumors and 88.1 % and 87.7 % accuracy (p value = 0.83) in GL261 tumors. The most distinct difference between 5-ALA and SWIG distribution was seen in areas of tumor-associated necrosis, which often showed weak/no protoporphyrin-IX fluorescence, but strong SWIG fluorescence. In twenty biopsy specimens from four subjects with HGG, SWIG demonstrated 100 % accuracy, while 5-ALA demonstrated 75-85 % accuracy; there was 90 % concordance between SWIG and 5-ALA fluorescence. CONCLUSION Our results provide the first direct comparison of the diagnostic utility of SWIG vs 5-ALA in both rodent and human HGG. Given the broader clinical utility of SWIG compared with 5-ALA, our data supports the use of SWIG in tumor surgery to improve the extent of safe resections. CLINICAL TRIAL NCT02710240 (US National Library of Medicine Registry; https://www.clinicaltrials.gov/ct2/show/NCT02710240?id=NCT02710240&draw=2&rank=1 ).
Collapse
|
4
|
Blanco-Formoso M, Alvarez-Puebla RA. Cancer Diagnosis through SERS and Other Related Techniques. Int J Mol Sci 2020; 21:ijms21062253. [PMID: 32214017 PMCID: PMC7139671 DOI: 10.3390/ijms21062253] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer heterogeneity increasingly requires ultrasensitive techniques that allow early diagnosis for personalized treatment. In addition, they should preferably be non-invasive tools that do not damage surrounding tissues or contribute to body toxicity. In this context, liquid biopsy of biological samples such as urine, blood, or saliva represents an ideal approximation of what is happening in real time in the affected tissues. Plasmonic nanoparticles are emerging as an alternative or complement to current diagnostic techniques, being able to detect and quantify novel biomarkers such as specific peptides and proteins, microRNA, circulating tumor DNA and cells, and exosomes. Here, we review the latest ideas focusing on the use of plasmonic nanoparticles in coded and label-free surface-enhanced Raman scattering (SERS) spectroscopy. Moreover, surface plasmon resonance (SPR) spectroscopy, colorimetric assays, dynamic light scattering (DLS) spectroscopy, mass spectrometry or total internal reflection fluorescence (TIRF) microscopy among others are briefly examined in order to highlight the potential and versatility of plasmonics.
Collapse
Affiliation(s)
- Maria Blanco-Formoso
- Department of Physical Chemistry and EMaS, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Correspondence: (M.B.-F.); (R.A.A.-P.)
| | - Ramon A. Alvarez-Puebla
- Department of Physical Chemistry and EMaS, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
- Correspondence: (M.B.-F.); (R.A.A.-P.)
| |
Collapse
|
5
|
Guerrini L, Alvarez-Puebla RA. Surface-Enhanced Raman Spectroscopy in Cancer Diagnosis, Prognosis and Monitoring. Cancers (Basel) 2019; 11:E748. [PMID: 31146464 PMCID: PMC6627759 DOI: 10.3390/cancers11060748] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 12/28/2022] Open
Abstract
As medicine continues to advance our understanding of and knowledge about the complex and multifactorial nature of cancer, new major technological challenges have emerged in the design of analytical methods capable of characterizing and assessing the dynamic heterogeneity of cancer for diagnosis, prognosis and monitoring, as required by precision medicine. With this aim, novel nanotechnological approaches have been pursued and developed for overcoming intrinsic and current limitations of conventional methods in terms of rapidity, sensitivity, multiplicity, non-invasive procedures and cost. Eminently, a special focus has been put on their implementation in liquid biopsy analysis. Among optical nanosensors, those based on surface-enhanced Raman scattering (SERS) have been attracting tremendous attention due to the combination of the intrinsic prerogatives of the technique (e.g., sensitivity and structural specificity) and the high degree of refinement in nano-manufacturing, which translate into reliable and robust real-life applications. In this review, we categorize the diverse strategic approaches of SERS biosensors for targeting different classes of tumor biomarkers (cells, nucleic acids and proteins) by illustrating key recent research works. We will also discuss the current limitations and future research challenges to be addressed to improve the competitiveness of SERS over other methodologies in cancer medicine.
Collapse
Affiliation(s)
- Luca Guerrini
- Department of Physical and Inorganic Chemistry and EMaS, Universitat Rovira I Virgili, Carrer de Marcel.lí Domingo s/n, 43007 Tarragona, Spain.
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry and EMaS, Universitat Rovira I Virgili, Carrer de Marcel.lí Domingo s/n, 43007 Tarragona, Spain.
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|