1
|
Gering C, Koivisto JT, Parraga J, Leppiniemi J, Vuornos K, Hytönen VP, Miettinen S, Kellomäki M. Design of modular gellan gum hydrogel functionalized with avidin and biotinylated adhesive ligands for cell culture applications. PLoS One 2019; 14:e0221931. [PMID: 31469884 PMCID: PMC6716642 DOI: 10.1371/journal.pone.0221931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/19/2019] [Indexed: 12/19/2022] Open
Abstract
This article proposes the coupling of the recombinant protein avidin to the polysaccharide gellan gum to create a modular hydrogel substrate for 3D cell culture and tissue engineering. Avidin is capable of binding biotin, and thus biotinylated compounds can be tethered to the polymer network to improve cell response. The avidin is successfully conjugated to gellan gum and remains functional as shown with fluorescence titration and electrophoresis (SDS-PAGE). Self-standing hydrogels were formed using bioamines and calcium chloride, yielding long-term stability and adequate stiffness for 3D cell culture, as confirmed with compression testing. Human fibroblasts were successfully cultured within the hydrogel treated with biotinylated RGD or biotinylated fibronectin. Moreover, human bone marrow stromal cells were cultured with hydrogel treated with biotinylated RGD over 3 weeks. We demonstrate a modular and inexpensive hydrogel scaffold for cell encapsulation that can be equipped with any desired biotinylated cell ligand to accommodate a wide range of cell types.
Collapse
Affiliation(s)
- Christine Gering
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Janne T. Koivisto
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Jenny Parraga
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Jenni Leppiniemi
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Kaisa Vuornos
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
- Research, Development and Innovation Center, Tampere University Hospital, Tampere, Finland
| | - Vesa P. Hytönen
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Susanna Miettinen
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
- Research, Development and Innovation Center, Tampere University Hospital, Tampere, Finland
| | - Minna Kellomäki
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| |
Collapse
|
2
|
Pino-Ramos VH, Ramos-Ballesteros A, López-Saucedo F, López-Barriguete JE, Varca GHC, Bucio E. Radiation Grafting for the Functionalization and Development of Smart Polymeric Materials. Top Curr Chem (Cham) 2016; 374:63. [DOI: 10.1007/s41061-016-0063-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
|