1
|
Colombo S, Loro C, Beccalli EM, Broggini G, Papis M. Cu(OTf) 2-catalyzed multicomponent reactions. Beilstein J Org Chem 2025; 21:122-145. [PMID: 39834894 PMCID: PMC11744696 DOI: 10.3762/bjoc.21.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
This review reports the achievements in copper(II) triflate-catalyzed processes concerning the multicomponent reactions, applied to the synthesis of acyclic and cyclic compounds. In particular, for the heteropolycyclic systems mechanistic insights were outlined as well as cycloaddition and aza-Diels-Alder reactions were included. These strategies have gained attention due to their highly atom- and step-economy, one-step multi-bond forming, mild reaction conditions, low cost and easy handling.
Collapse
Affiliation(s)
- Sara Colombo
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 9, 22100, Como, Italy
| | - Camilla Loro
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 9, 22100, Como, Italy
| | - Egle M Beccalli
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Via Venezian 21, 20133, Milano, Italy
| | - Gianluigi Broggini
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 9, 22100, Como, Italy
| | - Marta Papis
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 9, 22100, Como, Italy
| |
Collapse
|
2
|
Chudasama DD, Patel MS, Parekh JN, Patel HC, Rajput CV, Chikhaliya NP, Ram KR. Ultrasound-promoted convenient and ionic liquid [BMIM]BF 4 assisted green synthesis of diversely functionalized pyrazolo quinoline core via one-pot multicomponent reaction, DFT study and pharmacological evaluation. Mol Divers 2022:10.1007/s11030-022-10498-2. [PMID: 35915391 DOI: 10.1007/s11030-022-10498-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
An ultrasound-assisted green protocol for one-pot synthesis of a new series of pharmaceutically relevant pyrazolo quinoline derivatives (4a-t) were synthesized, characterized, and evaluated using DFT and biological activities. Pyrazolo quinoline derivatives (4a-t) were synthesized via a three-component tandem reaction of 1,3-dicarbonyl compound (1a-b), substituted aromatic aldehyde (2a-o), and 5-amino indazole (3a) in the presence of 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM]BF4 ionic liquid in ethanol at ambient conditions. The main purpose of the present work is selective functionalization of pyrazolo quinoline (4a-t) core excluding another potential parallel reaction under environmentally benign reaction conditions. The present protocol shows features such as amphiphilic behavior of ionic liquid during reaction transformation, and reusability of the [BMIM]BF4 ionic liquid under mild reaction condition. All newly derived compounds were evaluated for their in vitro anti-inflammatory and antioxidant activity. Among them, compound 4c showed encouraging antioxidant activity compared with standard antioxidant ascorbic acid, and compounds 4n and 4r displayed very good anti-inflammatory activity compared with a standard drug. In this study, a theoretical computational density functional study was also executed to perform the geometry optimizations, frontier molecular orbital approach, and molecular electrostatic potential (MESP). The DFT study was carried out with the basis set DFT/B3LYP/6-31+G (d, p) level of theory. The quantum chemical descriptors (QCDS) and MESP diagrams were plotted to examine the biological reactivities of representative pyrazolo quinolines (4a-t).
Collapse
Affiliation(s)
- Dipakkumar D Chudasama
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, 388120, Gujarat, India
| | - Manan S Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, 388120, Gujarat, India
| | - Jaydeepkumar N Parekh
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, 388120, Gujarat, India
| | - Harsh C Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, 388120, Gujarat, India
| | - Chetan V Rajput
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, 388120, Gujarat, India
| | - Navin P Chikhaliya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, 388120, Gujarat, India
| | - Kesur R Ram
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, 388120, Gujarat, India.
| |
Collapse
|
3
|
Xu H, Li L, Dai L, Mao K, Kou W, Lin C, Rong L. The efficient in‐situ reduction and cyclization reaction of aromatic aldehyde, 1,3‐cyclopentanedione (tetronic acid), and nitro‐compound under SnCl
2
·2H
2
O‐THF medium. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Hui Xu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials; School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou 221116 Jiangsu P. R. China
| | - Lei Li
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials; School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou 221116 Jiangsu P. R. China
| | - Lei Dai
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials; School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou 221116 Jiangsu P. R. China
| | - Kaimin Mao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials; School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou 221116 Jiangsu P. R. China
| | - Wang Kou
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials; School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou 221116 Jiangsu P. R. China
| | - Cong Lin
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials; School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou 221116 Jiangsu P. R. China
| | - Liangce Rong
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials; School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou 221116 Jiangsu P. R. China
| |
Collapse
|
4
|
Advancements in tetronic acid chemistry. Part 2: Use as a simple precursor to privileged heterocyclic motifs. Mol Divers 2016; 20:989-999. [DOI: 10.1007/s11030-016-9683-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/06/2016] [Indexed: 11/26/2022]
|