Burange AS, Osman SM, Luque R. Understanding flow chemistry for the production of active pharmaceutical ingredients.
iScience 2022;
25:103892. [PMID:
35243250 PMCID:
PMC8867129 DOI:
10.1016/j.isci.2022.103892]
[Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multi-step organic syntheses of various drugs, active pharmaceutical ingredients, and other pharmaceutically and agriculturally important compounds have already been reported using flow synthesis. Compared to batch, hazardous and reactive reagents can be handled safely in flow. This review discusses the pros and cons of flow chemistry in today’s scenario and recent developments in flow devices. The review majorly emphasizes on the recent developments in the flow synthesis of pharmaceutically important products in last five years including flibanserin, imatinib, buclizine, cinnarizine, cyclizine, meclizine, ribociclib, celecoxib, SC-560 and mavacoxib, efavirenz, fluconazole, melitracen HCl, rasagiline, tamsulosin, valsartan, and hydroxychloroquine. Critical steps and new development in the flow synthesis of selected compounds are also discussed.
Collapse