1
|
Xie H, Qian T, Liu L, Sun R, Che W, Zhao M, Hou X, Pan H, Su Y, Li J, Dong X, Liu P. Effect of progestin on thyroid function in female Wistar rats. Front Endocrinol (Lausanne) 2024; 15:1362774. [PMID: 38904035 PMCID: PMC11188309 DOI: 10.3389/fendo.2024.1362774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction To characterize the influence of female-specific hormones on women's thyroid function, the study investigated the influence of extra progestin from oral contraceptives on inducing thyroid dysfunction. Methods Sixty female Wistar rats were divided into six groups based on levonorgestrel or desogestrel administration as the main active agents: control, low (0.0039 mg*20-fold), medium (0.0039 mg*100-fold), high (0.0318 mg*100-fold) levonorgestrel (pure product); and low (0.0083 mg*20-fold) and high (0.0083 mg*100-fold) desogestrel (pure product). Progestin was administered by gavage every 4 days for 1 month. Statistical analysis was performed using one-way analysis of variance and the Kruskal-Wallis test. Results Following levonorgestrel gavage, serum free T4 and thyroidstimulating hormone levels were significantly lower in the experimental group than that in the control group (p=0.013 and 0.043). After desogestrel gavage, the serum free T4 and free T3 levels were lower in the experimental group than that in the control group (p=0.019 and 0.030). Thyroid hormone antibody concentrations were lower in rats administered levonorgestrel and desogestrel than that in control rats. Moreover, exposure to progestin upregulated the expression of the thyroid-stimulating hormone receptor and sodium iodide symporter in thyroid. Discussion Progestin stimulation enhanced the proliferation of follicular epithelial cells in rat thyroid tissues. Progestin exposure could cause thyroid dysfunction by upregulating the transcription of thyroid-stimulating hormone receptor and sodium iodide symporter in thyroid, thus inducing pathomorphological changes in rats' thyroid.
Collapse
Affiliation(s)
- Honglei Xie
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Tingting Qian
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
- Endemic Disease Control Section, Yun nan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Lanchun Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Rong Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Wenjing Che
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Meng Zhao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Xin Hou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Haowen Pan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Yue Su
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Jia Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Xiaoqiu Dong
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
- Ultrasound Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health, Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China
| |
Collapse
|
2
|
Sims ST, Kerksick CM, Smith-Ryan AE, Janse de Jonge XA, Hirsch KR, Arent SM, Hewlings SJ, Kleiner SM, Bustillo E, Tartar JL, Starratt VG, Kreider RB, Greenwalt C, Rentería LI, Ormsbee MJ, VanDusseldorp TA, Campbell BI, Kalman DS, Antonio J. International society of sports nutrition position stand: nutritional concerns of the female athlete. J Int Soc Sports Nutr 2023; 20:2204066. [PMID: 37221858 PMCID: PMC10210857 DOI: 10.1080/15502783.2023.2204066] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/29/2023] [Indexed: 05/25/2023] Open
Abstract
Based on a comprehensive review and critical analysis of the literature regarding the nutritional concerns of female athletes, conducted by experts in the field and selected members of the International Society of Sports Nutrition (ISSN), the following conclusions represent the official Position of the Society: 1. Female athletes have unique and unpredictable hormone profiles, which influence their physiology and nutritional needs across their lifespan. To understand how perturbations in these hormones affect the individual, we recommend that female athletes of reproductive age should track their hormonal status (natural, hormone driven) against training and recovery to determine their individual patterns and needs and peri and post-menopausal athletes should track against training and recovery metrics to determine the individuals' unique patterns. 2. The primary nutritional consideration for all athletes, and in particular, female athletes, should be achieving adequate energy intake to meet their energy requirements and to achieve an optimal energy availability (EA); with a focus on the timing of meals in relation to exercise to improve training adaptations, performance, and athlete health. 3. Significant sex differences and sex hormone influences on carbohydrate and lipid metabolism are apparent, therefore we recommend first ensuring athletes meet their carbohydrate needs across all phases of the menstrual cycle. Secondly, tailoring carbohydrate intake to hormonal status with an emphasis on greater carbohydrate intake and availability during the active pill weeks of oral contraceptive users and during the luteal phase of the menstrual cycle where there is a greater effect of sex hormone suppression on gluconogenesis output during exercise. 4. Based upon the limited research available, we recommend that pre-menopausal, eumenorrheic, and oral contraceptives using female athletes should aim to consume a source of high-quality protein as close to beginning and/or after completion of exercise as possible to reduce exercise-induced amino acid oxidative losses and initiate muscle protein remodeling and repair at a dose of 0.32-0.38 g·kg-1. For eumenorrheic women, ingestion during the luteal phase should aim for the upper end of the range due to the catabolic actions of progesterone and greater need for amino acids. 5. Close to the beginning and/or after completion of exercise, peri- and post-menopausal athletes should aim for a bolus of high EAA-containing (~10 g) intact protein sources or supplements to overcome anabolic resistance. 6. Daily protein intake should fall within the mid- to upper ranges of current sport nutrition guidelines (1.4-2.2 g·kg-1·day-1) for women at all stages of menstrual function (pre-, peri-, post-menopausal, and contraceptive users) with protein doses evenly distributed, every 3-4 h, across the day. Eumenorrheic athletes in the luteal phase and peri/post-menopausal athletes, regardless of sport, should aim for the upper end of the range. 7. Female sex hormones affect fluid dynamics and electrolyte handling. A greater predisposition to hyponatremia occurs in times of elevated progesterone, and in menopausal women, who are slower to excrete water. Additionally, females have less absolute and relative fluid available to lose via sweating than males, making the physiological consequences of fluid loss more severe, particularly in the luteal phase. 8. Evidence for sex-specific supplementation is lacking due to the paucity of female-specific research and any differential effects in females. Caffeine, iron, and creatine have the most evidence for use in females. Both iron and creatine are highly efficacious for female athletes. Creatine supplementation of 3 to 5 g per day is recommended for the mechanistic support of creatine supplementation with regard to muscle protein kinetics, growth factors, satellite cells, myogenic transcription factors, glycogen and calcium regulation, oxidative stress, and inflammation. Post-menopausal females benefit from bone health, mental health, and skeletal muscle size and function when consuming higher doses of creatine (0.3 g·kg-1·d-1). 9. To foster and promote high-quality research investigations involving female athletes, researchers are first encouraged to stop excluding females unless the primary endpoints are directly influenced by sex-specific mechanisms. In all investigative scenarios, researchers across the globe are encouraged to inquire and report upon more detailed information surrounding the athlete's hormonal status, including menstrual status (days since menses, length of period, duration of cycle, etc.) and/or hormonal contraceptive details and/or menopausal status.
Collapse
Affiliation(s)
- Stacy T. Sims
- SPRINZ Auckland University of Technology, Auckland, New Zealand
| | - Chad M. Kerksick
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Saint Charles, TX, USA
| | - Abbie E. Smith-Ryan
- Institute of Sports Sciences and Medicine, Florida State University, Nutrition and Integrative Physiology, Tallahassee, FL, USA
| | | | - Katie R. Hirsch
- Jacksonville University, Department of Health and Exercise Sciences, Jacksonville, FL, USA
| | - Shawn M. Arent
- Jacksonville University, Department of Health and Exercise Sciences, Jacksonville, FL, USA
| | - Susan Joyce Hewlings
- University of South Florida, Performance and Physique Enhancement Laboratory,Tampa, FL, USA
| | - Susan M. Kleiner
- Dr. Kiran C Patel College of Osteopathic Medicine, Nova Southeastern University, Nutrition Department, Davie, FL, USA
| | - Erik Bustillo
- Nova Southeastern University, Exercise and Sport Science, Fight Science Lab, Davie, FL, USA
| | - Jaime L. Tartar
- College of Science, Technology,
and Health, Lindenwood University, Exercise and Performance Nutrition Laboratory, St Charles, MO, USA
| | - Valerie G. Starratt
- College of Science, Technology,
and Health, Lindenwood University, Exercise and Performance Nutrition Laboratory, St Charles, MO, USA
| | - Richard B. Kreider
- University of North Carolina Chapel Hill, Department of Exercise and Sport Science, Chapel Hill, NC, USA
| | - Casey Greenwalt
- Macquarie University, Department of Health Sciences, Macquarie Park, NSW, Australia
| | - Liliana I. Rentería
- Macquarie University, Department of Health Sciences, Macquarie Park, NSW, Australia
| | - Michael J. Ormsbee
- Macquarie University, Department of Health Sciences, Macquarie Park, NSW, Australia
| | - Trisha A. VanDusseldorp
- University of South, Department of Exercise Science, Arnold School of Public Health, Carolina, Columbia, USA
- Nutrasource, Guelph, Ontario, Canada
| | | | | | - Jose Antonio
- Nova Southeastern University, Department of Psychology and Neuroscience, Fort Lauderdale, FL, USA
| |
Collapse
|
3
|
Läsche M, Gallwas J, Gründker C. Like Brothers in Arms: How Hormonal Stimuli and Changes in the Metabolism Signaling Cooperate, Leading HPV Infection to Drive the Onset of Cervical Cancer. Int J Mol Sci 2022; 23:5050. [PMID: 35563441 PMCID: PMC9103757 DOI: 10.3390/ijms23095050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Despite all precautionary actions and the possibility of using vaccinations to counteract infections caused by human papillomaviruses (HPVs), HPV-related cancers still account for approximately 5% of all carcinomas. Worldwide, many women are still excluded from adequate health care due to their social position and origin. Therefore, immense efforts in research and therapy are still required to counteract the challenges that this disease entails. The special thing about an HPV infection is that it is not only able to trick the immune system in a sophisticated way, but also, through genetic integration into the host genome, to use all the resources available to the host cells to complete the replication cycle of the virus without activating the alarm mechanisms of immune recognition and elimination. The mechanisms utilized by the virus are the metabolic, immune, and hormonal signaling pathways that it manipulates. Since the virus is dependent on replication enzymes of the host cells, it also intervenes in the cell cycle of the differentiating keratinocytes and shifts their terminal differentiation to the uppermost layers of the squamocolumnar transformation zone (TZ) of the cervix. The individual signaling pathways are closely related and equally important not only for the successful replication of the virus but also for the onset of cervical cancer. We will therefore analyze the effects of HPV infection on metabolic signaling, as well as changes in hormonal and immune signaling in the tumor and its microenvironment to understand how each level of signaling interacts to promote tumorigenesis of cervical cancer.
Collapse
Affiliation(s)
| | | | - Carsten Gründker
- Department of Gynecology and Obstetrics, University Medicine Göttingen, 37075 Göttingen, Germany; (M.L.); (J.G.)
| |
Collapse
|
4
|
The effect of Myo-Inositol supplement on molecular regulation of folliculogenesis, steroidogenesis, and assisted reproductive technique outcomes in patients with polycystic ovarian syndrome. Mol Biol Rep 2022; 49:875-884. [PMID: 35040006 DOI: 10.1007/s11033-021-06833-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022]
Abstract
RESEARCH QUESTION The mechanism of Myo-Inositol, as an adjuvant, on key signaling pathways related to oocyte maturation, fertilization rate, and embryo quality as well as ovarian steroidogenesis in cumulus cells of PCOS patients, is still unclear. DESIGN Infertile patients who were candidates for ART cycles were divided into three groups (n = 30 in each group), including group 1: PCOS patients only receiving folic acid, group 2: PCOS patients receiving daily Myo-Inositol combined with folic acid, and a control group (group 3): normal ovulatory women without PCOS receiving only folic acid from 1 month prior to IVF cycle until the day of ovum pick up. During the ART procedure, oocytes maturation, fertilization rate, and embryo quality were assessed. The gene expressions of FSHR, LHR, CYP11A1, CYP19A1, 3β-HSD2, and StAR were also analyzed using qRT-PCR. Western blot analysis was performed for the evaluation of AKT, ERK, CREB, and AMPK phosphorylation. RESULT Despite equal number of retrieved oocytes, the percentages of MII oocytes, fertilization rate, and embryo quality were found to be significantly higher in group 2 due to the administration of inofolic. The expressions of all the studied genes were significantly higher in the cumulus cells of group 1 compared to the group 2. Higher phosphorylation of ERK1/2 was found in the groups 2 and 3 compared to the group 1. On the other hand, p-Akt has significantly decreased in the group 2 compared to the group 1. CONCLUSION Our study provides new insight into the molecular mechanism underlying the positive effect of Myo-Inositol on intrinsic ovarian defects in PCOS, steroidogenesis, oocyte maturation, fertilization rate, and embryo quality.
Collapse
|
5
|
Brouillard A, Davignon LM, Fortin J, Marin MF. A Year Through the COVID-19 Pandemic: Deleterious Impact of Hormonal Contraception on Psychological Distress in Women. Front Psychiatry 2022; 13:835857. [PMID: 35370813 PMCID: PMC8966723 DOI: 10.3389/fpsyt.2022.835857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Women are more at risk than men of suffering from psychological distress during disease outbreaks. Interestingly, no biological factors have been studied to explain this disparity in such contexts. Sex hormone variations induced by hormonal contraceptives (HC) have been associated with mental health vulnerabilities. However, most studies have examined current effects of HC without considering whether a chronic modulation of sex hormone levels could induce long-lasting effects that persist after HC cessation. OBJECTIVES To date, the role of HC on psychological health in women during a disease outbreak is still unknown. We aimed to investigate both current and long-term effects of HC on psychological distress throughout the COVID-19 pandemic. METHOD At four time points during the COVID-19 pandemic (June 2020, September 2020, December 2020, March 2021), we collected self-reported data on psychological distress, assessing symptoms of post-traumatic stress [via the Impact of Event Scale-Revised (IES-R)], symptoms of depression, anxiety, and stress [via the Depression Anxiety Stress Scales (DASS-21)]. Linear mixed models were first used to compare men (n = 49), naturally cycling women (n = 73), and women using HC (n = 32) across time. To examine long-lasting effects of HC, exploratory analyses were restricted to women, comparing current HC users (n = 32), past users (n = 56), and never users (n = 17). RESULTS The first model revealed that women taking HC reported stable post-traumatic stress symptoms across time, compared to naturally cycling women and men who showed a significant decrease from T1 to T2. HC users also reported greater DASS-21 total scores over time. Moreover, HC users reported higher stress and anxiety symptoms than men. In the second model, results showed that past HC users had similar anxiety levels as current HC users. These two groups reported significantly more anxiety symptoms than never users. CONCLUSION HC users report increased distress during the pandemic relative to naturally cycling women and men. Our results also suggest a long-lasting effect of HC intake, highlighting the importance of considering both the current use of HC and its history. This could provide some insight into potential avenues for explaining why some women are prone to higher psychological distress than men.
Collapse
Affiliation(s)
- Alexandra Brouillard
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada.,Department of Psychology, University of Quebec in Montreal, Montreal, QC, Canada
| | - Lisa Marie Davignon
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada.,Department of Psychology, University of Quebec in Montreal, Montreal, QC, Canada
| | - Justine Fortin
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada.,Department of Psychology, University of Quebec in Montreal, Montreal, QC, Canada
| | - Marie France Marin
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada.,Department of Psychology, University of Quebec in Montreal, Montreal, QC, Canada
| |
Collapse
|
6
|
Bustamante-Barrientos FA, Méndez-Ruette M, Ortloff A, Luz-Crawford P, Rivera FJ, Figueroa CD, Molina L, Bátiz LF. The Impact of Estrogen and Estrogen-Like Molecules in Neurogenesis and Neurodegeneration: Beneficial or Harmful? Front Cell Neurosci 2021; 15:636176. [PMID: 33762910 PMCID: PMC7984366 DOI: 10.3389/fncel.2021.636176] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/10/2021] [Indexed: 12/19/2022] Open
Abstract
Estrogens and estrogen-like molecules can modify the biology of several cell types. Estrogen receptors alpha (ERα) and beta (ERβ) belong to the so-called classical family of estrogen receptors, while the G protein-coupled estrogen receptor 1 (GPER-1) represents a non-classical estrogen receptor mainly located in the plasma membrane. As estrogen receptors are ubiquitously distributed, they can modulate cell proliferation, differentiation, and survival in several tissues and organs, including the central nervous system (CNS). Estrogens can exert neuroprotective roles by acting as anti-oxidants, promoting DNA repair, inducing the expression of growth factors, and modulating cerebral blood flow. Additionally, estrogen-dependent signaling pathways are involved in regulating the balance between proliferation and differentiation of neural stem/progenitor cells (NSPCs), thus influencing neurogenic processes. Since several estrogen-based therapies are used nowadays and estrogen-like molecules, including phytoestrogens and xenoestrogens, are omnipresent in our environment, estrogen-dependent changes in cell biology and tissue homeostasis have gained attention in human health and disease. This article provides a comprehensive literature review on the current knowledge of estrogen and estrogen-like molecules and their impact on cell survival and neurodegeneration, as well as their role in NSPCs proliferation/differentiation balance and neurogenesis.
Collapse
Affiliation(s)
- Felipe A Bustamante-Barrientos
- Immunology Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Maxs Méndez-Ruette
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
| | - Alexander Ortloff
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Patricia Luz-Crawford
- Immunology Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.,Facultad de Medicina, School of Medicine, Universidad de los Andes, Santiago, Chile
| | - Francisco J Rivera
- Laboratory of Stem Cells and Neuroregeneration, Faculty of Medicine, Institute of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Carlos D Figueroa
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Molina
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Luis Federico Bátiz
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.,Facultad de Medicina, School of Medicine, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
7
|
James CD, Morgan IM, Bristol ML. The Relationship between Estrogen-Related Signaling and Human Papillomavirus Positive Cancers. Pathogens 2020; 9:E403. [PMID: 32455952 PMCID: PMC7281727 DOI: 10.3390/pathogens9050403] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
High risk-human papillomaviruses (HPVs) are known carcinogens. Numerous reports have linked the steroid hormone estrogen, and the expression of estrogen receptors (ERs), to HPV-related cancers, although the exact nature of the interactions remains to be fully elucidated. Here we will focus on estrogen signaling and describe both pro and potentially anti-cancer effects of this hormone in HPV-positive cancers. This review will summarize: (1) cell culture-related evidence, (2) animal model evidence, and (3) clinical evidence demonstrating an interaction between estrogen and HPV-positive cancers. This comprehensive review provides insights into the potential relationship between estrogen and HPV. We suggest that estrogen may provide a potential therapeutic for HPV-related cancers, however additional studies are necessary.
Collapse
Affiliation(s)
- Claire D. James
- School of Dentistry, Philips Institute for Oral Health Research, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA;
| | - Iain M. Morgan
- School of Dentistry, Philips Institute for Oral Health Research, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA;
- VCU Massey Cancer Center, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA
| | - Molly L. Bristol
- School of Dentistry, Philips Institute for Oral Health Research, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA;
| |
Collapse
|