1
|
Qiao Y, Zhang Y, Ding X, Zhang Y, Su X, Zhang L, Ma H, Liang J, Zhou Q, Tan G. Sini decoction alleviates LPS-induced sepsis partly via restoration of metabolic impairments in the hypothalamic-pituitary-adrenal microenvironment. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119456. [PMID: 39922328 DOI: 10.1016/j.jep.2025.119456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/31/2024] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The hypothalamic-pituitary-adrenal (HPA) axis plays a vital role in the protection against sepsis. Sini decoction (SND) could improve HPA axis function. AIM OF THE STUDY This work aimed to explore the effective mechanism of SND against lipopolysaccharide (LPS)-induced sepsis in rats from the metabolic regulation of the HPA axis microenvironment. MATERIALS AND METHODS We evaluated the multiorgan injury-associated enzymatic indicators and histopathological changes as well as the ultrastructural changes in the hypothalamus, pituitary gland, and adrenal gland associated with LPS-induced sepsis. Serum inflammatory cytokines, corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were determined by ELISA. The target tissues metabolomics of the HPA axis (hypothalamus, pituitary gland, and adrenal gland), based on ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOFMS), were conducted to dissect the metabolic network regulated by SND. Western blotting was further used to validate the key metabolic pathways. In addition, the absorbed chemical constituents in serum and cerebrospinal fluid were identified by UHPLC-Q-TOFMS combined with solid-phase extraction. RESULTS Forty and twenty-three components of SND were absorbed into the serum and cerebrospinal fluid, respectively. SND could decrease multiorgan injury-associated indicators, including serum creatine kinase, urea nitrogen, creatinine, lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase, inhibit inflammatory cytokines IL-6 and TNF-α, regulate the serum levels of CRH, ACTH and CORT in LPS-induced septic rats, and alleviate the sepsis-induced morphological changes in the heart, liver, spleen, lung, and kidney and HPA tissues. SND had the ability to regulate the unbalanced glycerophospholipid metabolism, fatty acid β-oxidation, fatty acid amide metabolism, tryptophan metabolism and arachidonic acid metabolism to improve the LPS-induced sepsis. The results of western blotting analysis demonstrated that SND could decrease the expressions of LPCAT1 and IDO1 and increase the expressions of CPT1A and FAAH1 to regulate the above metabolic disorders. CONCLUSION SND could alleviate LPS-induced sepsis partly via restoration of metabolic impairments in the HPA axis microenvironment, which provided important insights to future work to ascertain the mechanisms undergoing the HPA axis response to SND against sepsis.
Collapse
Affiliation(s)
- Yan Qiao
- School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Zhang
- School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China; Department of Gastroenterology, 967th Hospital of the PLA Joint Logistic Support Force, Dalian, Liaoning, 116021, China
| | - Xin Ding
- School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China; Department of Traditional Chinese Medicine, Xijing Hospital, The Fourth Medical University, Xi'an 710032, China
| | - Ya Zhang
- School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xuemei Su
- School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Lei Zhang
- School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hongrui Ma
- School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Junli Liang
- School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Qian Zhou
- Department of Traditional Chinese Medicine, Xijing Hospital, The Fourth Medical University, Xi'an 710032, China.
| | - Guangguo Tan
- School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Färber N, Manuel J, May M, Foadi N, Beissner F. The Central Inflammatory Network: A Hypothalamic fMRI Study of Experimental Endotoxemia in Humans. Neuroimmunomodulation 2022; 29:231-247. [PMID: 34610606 PMCID: PMC9254315 DOI: 10.1159/000519061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/25/2021] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Inflammation is a mechanism of the immune system that is part of the reaction to pathogens or injury. The central nervous system closely regulates inflammation via neuroendocrine or direct neuroimmune mechanisms, but our current knowledge of the underlying circuitry is limited. Therefore, we aimed to identify hypothalamic centres involved in sensing or modulating inflammation and to study their association with known large-scale brain networks. METHODS Using high-resolution functional magnetic resonance imaging (fMRI), we recorded brain activity in healthy male subjects undergoing experimental inflammation from intravenous endotoxin. Four fMRI runs covered key phases of the developing inflammation: pre-inflammatory baseline, onset of endotoxemia, onset of pro-inflammatory cytokinemia, and peak of pro-inflammatory cytokinemia. Using masked independent component analysis, we identified functionally homogeneous subregions of the hypothalamus, which were further tested for changes in functional connectivity during inflammation and for temporal correlation with tumour necrosis factor and adrenocorticotropic hormone serum levels. We then studied the connection of these inflammation-associated hypothalamic subregions with known large-scale brain networks. RESULTS Our results show that there are at least 6 hypothalamic subregions associated with inflammation in humans including the paraventricular nucleus, supraoptic nucleus, dorsomedial hypothalamus, bed nucleus of the stria terminalis, lateral hypothalamic area, and supramammillary nucleus. They are functionally embedded in at least 3 different large-scale brain networks, namely a medial frontoparietal network, an occipital-pericentral network, and a midcingulo-insular network. CONCLUSION Measuring how the hypothalamus detects or modulates systemic inflammation is a first step to understand central nervous immunomodulation.
Collapse
Affiliation(s)
- Natalia Färber
- Somatosensory and Autonomic Therapy Research, Institute for Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
- *Natalia Färber,
| | - Jorge Manuel
- Somatosensory and Autonomic Therapy Research, Institute for Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
| | - Marcus May
- CRC Core Facility, Hannover Medical School, Hanover, Germany
| | - Nilufar Foadi
- Clinic for Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hanover, Germany
| | - Florian Beissner
- Somatosensory and Autonomic Therapy Research, Institute for Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
- **Florian Beissner,
| |
Collapse
|
3
|
Paul D, Mohankumar SK, Thomas RS, Kheng CB, Basavan D. Potential implications of angiotensin-converting enzyme 2 blockades on neuroinflammation in SARS-CoV-2 infection. Curr Drug Targets 2021; 23:364-372. [PMID: 34732115 DOI: 10.2174/1389450122666211103165837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/09/2021] [Accepted: 09/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Angiotensin-converting enzyme 2 (ACE2) has been reported as a portal for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Consequently, scientific strategies to combat coronavirus disease of 2019 (COVID-19) were targeted to arrest SARS-CoV-2 invasion by blocking ACE2. While blocking ACE2 appears a beneficial approach to treat COVID-19, clinical concerns have been raised primarily due to the various intrinsic roles of ACE2 in neurological functions. Selective reports indicate that angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs) upregulate ACE2 levels. ACE2 metabolizes angiotensin II and several peptides, including apelin-13, neurotensin, kinetensin, dynorphin, [des-Arg9] bradykinin, and [Lys-des-Arg9]-bradykinin, which may elicit neuroprotective effects. Since ARBs and ACEIs upregulate ACE2, it may be hypothesized that patients with hypertension receiving ARBs and ACEIs may have higher expression of ACE2 and thus be at a greater risk of severe disease from the SARS-CoV-2 infections. However, recent clinical reports indicate the beneficial role of ARBs/ACEIs in reducing COVID-19 severity. Together, this warrants a further study of the effects of ACE2 blockades in hypertensive patients medicated with ARBs/ACEIs, and their consequential impact on neuronal health. However, the associations between their blockade and any neuroinflammation also warrant further research. OBJECTIVE This review collates mechanistic insights into the dichotomous roles of ACE2 in SARS-CoV-2 invasion and neurometabolic functions and the possible impact of ACE2 blockade on neuroinflammation. CONCLUSION It has been concluded that ACE2 blockade imposes neuroinflammation.
Collapse
Affiliation(s)
- Deepraj Paul
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rocklands, Ooty, The Nilgiris 643001, Tamil Nadu. India
| | - Suresh Kumar Mohankumar
- Swansea University Medical School, Swansea University, Singleton Park, Wales SA2 8PP. United Kingdom
| | - Rhian S Thomas
- Swansea University Medical School, Swansea University, Singleton Park, Wales SA2 8PP. United Kingdom
| | - Chai Boon Kheng
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road Section 2, Nangang District, Taipei City 11529. Taiwan
| | - Duraiswamy Basavan
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rocklands, Ooty, The Nilgiris 643001, Tamil Nadu. India
| |
Collapse
|
4
|
Rouhiainen A, Kulesskaya N, Mennesson M, Misiewicz Z, Sipilä T, Sokolowska E, Trontti K, Urpa L, McEntegart W, Saarnio S, Hyytiä P, Hovatta I. The bradykinin system in stress and anxiety in humans and mice. Sci Rep 2019; 9:19437. [PMID: 31857655 PMCID: PMC6923437 DOI: 10.1038/s41598-019-55947-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 11/27/2019] [Indexed: 01/06/2023] Open
Abstract
Pharmacological research in mice and human genetic analyses suggest that the kallikrein-kinin system (KKS) may regulate anxiety. We examined the role of the KKS in anxiety and stress in both species. In human genetic association analysis, variants in genes for the bradykinin precursor (KNG1) and the bradykinin receptors (BDKRB1 and BDKRB2) were associated with anxiety disorders (p < 0.05). In mice, however, neither acute nor chronic stress affected B1 receptor gene or protein expression, and B1 receptor antagonists had no effect on anxiety tests measuring approach-avoidance conflict. We thus focused on the B2 receptor and found that mice injected with the B2 antagonist WIN 64338 had lowered levels of a physiological anxiety measure, the stress-induced hyperthermia (SIH), vs controls. In the brown adipose tissue, a major thermoregulator, WIN 64338 increased expression of the mitochondrial regulator Pgc1a and the bradykinin precursor gene Kng2 was upregulated after cold stress. Our data suggests that the bradykinin system modulates a variety of stress responses through B2 receptor-mediated effects, but systemic antagonists of the B2 receptor were not anxiolytic in mice. Genetic variants in the bradykinin receptor genes may predispose to anxiety disorders in humans by affecting their function.
Collapse
Affiliation(s)
- Ari Rouhiainen
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Natalia Kulesskaya
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Marie Mennesson
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland.,Department of Psychology and Logopedics, Medicum, University of Helsinki, Helsinki, Finland.,SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Zuzanna Misiewicz
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland.,Department of Psychology and Logopedics, Medicum, University of Helsinki, Helsinki, Finland
| | - Tessa Sipilä
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Ewa Sokolowska
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Kalevi Trontti
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland.,Department of Psychology and Logopedics, Medicum, University of Helsinki, Helsinki, Finland.,SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Lea Urpa
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - William McEntegart
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Suvi Saarnio
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Petri Hyytiä
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland
| | - Iiris Hovatta
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland. .,Department of Psychology and Logopedics, Medicum, University of Helsinki, Helsinki, Finland. .,SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
He MC, Shi Z, Sha NN, Chen N, Peng SY, Liao DF, Wong MS, Dong XL, Wang YJ, Yuan TF, Zhang Y. Paricalcitol alleviates lipopolysaccharide-induced depressive-like behavior by suppressing hypothalamic microglia activation and neuroinflammation. Biochem Pharmacol 2019; 163:1-8. [DOI: 10.1016/j.bcp.2019.01.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/25/2019] [Indexed: 12/11/2022]
|
6
|
Farfara D, Feierman E, Richards A, Revenko AS, MacLeod RA, Norris EH, Strickland S. Knockdown of circulating C1 inhibitor induces neurovascular impairment, glial cell activation, neuroinflammation, and behavioral deficits. Glia 2019; 67:1359-1373. [PMID: 30882931 DOI: 10.1002/glia.23611] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 12/20/2022]
Abstract
The cross-talk between blood proteins, immune cells, and brain function involves complex mechanisms. Plasma protein C1 inhibitor (C1INH) is an inhibitor of vascular inflammation that is induced by activation of the kallikrein-kinin system (KKS) and the complement system. Knockout of C1INH was previously correlated with peripheral vascular permeability via the bradykinin pathway, yet there was no evidence of its correlation with blood-brain barrier (BBB) integrity and brain function. In order to understand the effect of plasma C1INH on brain pathology via the vascular system, we knocked down circulating C1INH in wild-type (WT) mice using an antisense oligonucleotide (ASO), without affecting C1INH expression in peripheral immune cells or the brain, and examined brain pathology. Long-term elimination of endogenous C1INH in the plasma induced the activation of the KKS and peritoneal macrophages but did not activate the complement system. Bradykinin pathway proteins were elevated in the periphery and the brain, resulting in hypotension. BBB permeability, extravasation of plasma proteins into the brain parenchyma, activation of glial cells, and elevation of pro-inflammatory response mediators were detected. Furthermore, infiltrating innate immune cells were observed entering the brain through the lateral ventricle walls and the neurovascular unit. Mice showed normal locomotion function, yet cognition was impaired and depressive-like behavior was evident. In conclusion, our results highlight the important role of regulated plasma C1INH as it acts as a gatekeeper to the brain via the neurovascular system. Thus, manipulation of C1INH in neurovascular disorders might be therapeutically beneficial.
Collapse
Affiliation(s)
- Dorit Farfara
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York
| | - Emily Feierman
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York
| | - Allison Richards
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York
| | - Alexey S Revenko
- Department of Antisense Drug Discovery, IONIS Pharmaceuticals Inc., Carlsbad, California
| | - Robert A MacLeod
- Department of Antisense Drug Discovery, IONIS Pharmaceuticals Inc., Carlsbad, California
| | - Erin H Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York
| |
Collapse
|
7
|
Effect of the bradykinin 1 receptor antagonist SSR240612 after oral administration in Mycobacterium tuberculosis-infected mice. Tuberculosis (Edinb) 2018; 109:1-7. [PMID: 29559112 DOI: 10.1016/j.tube.2018.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 11/21/2022]
Abstract
The role, if any, played by the kinin system in tuberculosis infection models, either in vivo or in vitro, was investigated. The effects of Mycobacterium tuberculosis infection on C57BL/6 wild type, B1R-/-, B2R-/- and double B1R/B2R knockout mice were evaluated. Immunohistochemistry analysis was carried out to assess B1R and B2R expression in spleens and lungs of M. tuberculosis-infected mice. In addition, in vitro experiments with M. tuberculosis-infected macrophages were performed. The in vivo effects of HOE-140 and SSR240612 on the mice model of infection were also evaluated. Infected B2R-/- mice exhibited increased splenomegaly, whereas decreased spleen weight in infected double B1R/B2R knockout mice was observed. The bacterial load, determined as colony-forming units, did not differ in the spleens and lungs of the studied mouse strains. Importantly, immunohistochemical analysis revealed that B1R was upregulated in both spleens and lungs of infected mice. M. tuberculosis-infected macrophages incubated with SSR240612, alone or in combination with des-Arg9-BK, for four days, displayed a marked inhibitory effect on CFU counts. However, the pre-incubation of the selective B1R (des-Arg9-BK and SSR240612) and B2R (BK and HOE-140) agonists and antagonists, respectively, did not significantly affect the bacterial loads. A statistically significant reduction in the CFU of M. tuberculosis in lungs and spleens of animals treated with SSR240612, but not with HOE-140, was observed. Further efforts should be pursued to clarify whether or not SSR240612 might be considered an option for the treatment of tuberculosis.
Collapse
|
8
|
Abstract
INTRODUCTION Kinins are peptide mediators exerting their pro-inflammatory actions by the selective stimulation of two distinct G-protein coupled receptors, termed BKB1R and BKB2R. While BKB2R is constitutively expressed in a multitude of tissues, BKB1R is hardly expressed at baseline but highly inducible by inflammatory mediators. In particular, BKB1R was shown to be involved in the pathogenesis of numerous inflammatory diseases. Areas covered: This review intends to evaluate the therapeutic potential of substances interacting with the BKB1R. To this purpose we summarize the published literature on animal studies with antagonists and knockout mice for this receptor. Expert Opinion: In most cases the pharmacological inhibition of BKB1R or its genetic deletion was beneficial for the outcome of the disease in animal models. Therefore, several companies have developed BKB1R antagonists and tested them in phase I and II clinical trials. However, none of the developed BKB1R antagonists was further developed for clinical use. We discuss possible reasons for this failure of translation of preclinical findings on BKB1R antagonists into the clinic.
Collapse
Affiliation(s)
- Fatimunnisa Qadri
- a Max-Delbrück Center for Molecular Medicine (MDC) , Berlin , Germany
| | - Michael Bader
- a Max-Delbrück Center for Molecular Medicine (MDC) , Berlin , Germany.,b Berlin Institute of Health (BIH) , Berlin , Germany.,c Charité University Medicine Berlin , Germany.,d German Center for Cardiovascular Research (DZHK) site Berlin , Berlin , Germany.,e Institute for Biology , University of Lübeck , Lübeck , Germany
| |
Collapse
|
9
|
Soares DDM, Santos DR, Rummel C, Ott D, Melo MCC, Roth J, Calixto JB, Souza GEP. The relevance of kalikrein-kinin system via activation of B 2 receptor in LPS-induced fever in rats. Neuropharmacology 2017; 126:84-96. [PMID: 28826826 DOI: 10.1016/j.neuropharm.2017.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 08/05/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE This study evaluated the involvement of endogenous kallikrein-kinin system and the bradykinin (BK) B1 and B2 receptors on LPS- induced fever and the POA cells involved in this response. MATERIAL AND METHODS Male Wistar rats received either i.v. (1 mg/kg), i.c.v. (20 nmol) or i.h. (2 nmol) injections of icatibant (B2 receptor antagonist) 30 or 60 min, respectively, before the stimuli. DALBK (B1 receptor antagonist) was given either 15min before BK (i.c.v.) or 30 min before LPS (i.v.). Captopril (5 mg/kg, sc.,) was given 1 h prior LPS or BK. Concentrations of BK and total kininogenon CSF, plasma and tissue kallikrein were evaluated. Rectal temperatures (rT) were assessed by telethermometry. Ca++ signaling in POA cells was performed in rat pup brain tissue microcultures. RESULTS Icatibant reduced LPS fever while, captopril exacerbated that response, an effect abolished by icatibant. Icatibant (i.h.) reduced fever to BK (i.h.) but not that induced by LPS (i.v.). BK increased intracellular calcium concentration in neurons and astrocytes. LPS increased levels of bradykinin, tissue kallikrein and total kininogen. BK (i.c.v.) increased rT and decreased tail skin temperature. Captopril potentiated BK-induced fever an effect abolished by icatibant. DALBK reduced the fever induced by BK. BK (i.c.v.) increased the CSF PGE2concentration. Effect abolished by indomethacin (i.p.). CONCLUSIONS LPS activates endogenous kalikrein-kinin system leading to production of BK, which by acting on B2-receptors of POA cells causes prostaglandin synthesis that in turn produces fever. Thus, a kinin B2-receptor antagonist that enters into the brain could constitute a new and interesting strategy to treat fever.
Collapse
Affiliation(s)
- Denis de Melo Soares
- Department of Medicament, Faculty of Pharmacy of Federal University of Bahia, Laboratory of Pharmacology, Ribeirão Preto, SP, Brazil.
| | - Danielle R Santos
- Pharmacology, Department of Physic and Chemistry, Faculty of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Christoph Rummel
- Veterinary Physiology, Faculty of Veterinary Medicine, Justus-Liebig-University of Giessen, Germany
| | - Daniela Ott
- Veterinary Physiology, Faculty of Veterinary Medicine, Justus-Liebig-University of Giessen, Germany
| | - Míriam C C Melo
- Pharmacology, Department of Physic and Chemistry, Faculty of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Joachim Roth
- Veterinary Physiology, Faculty of Veterinary Medicine, Justus-Liebig-University of Giessen, Germany
| | - João B Calixto
- Center of Innovation and Preclinical Research, Florianópolis, SC, Brazil
| | - Glória E P Souza
- Pharmacology, Department of Physic and Chemistry, Faculty of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
10
|
Kahn R, Mossberg M, Ståhl AL, Johansson K, Lopatko Lindman I, Heijl C, Segelmark M, Mörgelin M, Leeb-Lundberg LF, Karpman D. Microvesicle transfer of kinin B1-receptors is a novel inflammatory mechanism in vasculitis. Kidney Int 2017; 91:96-105. [DOI: 10.1016/j.kint.2016.09.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 01/15/2023]
|
11
|
Shi Z, Ren H, Huang Z, Peng Y, He B, Yao X, Yuan TF, Su H. Fish Oil Prevents Lipopolysaccharide-Induced Depressive-Like Behavior by Inhibiting Neuroinflammation. Mol Neurobiol 2016; 54:7327-7334. [PMID: 27815837 DOI: 10.1007/s12035-016-0212-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/11/2016] [Indexed: 11/30/2022]
Abstract
Depression is associated with somatic immune changes, and neuroinflammation is now recognized as hallmark for depressive disorders. N-3 (or omega-3) polyunsaturated fatty acids (PUFAs) are well known to suppress neuroinflammation, reduce oxidative stress, and protect neuron from injury. We pretreated animals with fish oil and induced acute depression-like behaviors with systemic lipopolysaccharide (LPS) injection. The levels of cytokines and stress hormones were determined from plasma and different brain areas. The results showed that fish oil treatment prevent LPS-induce depressive behavior by suppression of neuroinflammation. LPS induced acute neuroinflammation in different brain regions, which were prevented in fish oil fed mice. However, neither LPS administration nor fish oil treatment has strong effect on stress hormone secretion in the hypothalamus and adrenal. Fish oil might provide a useful therapy against inflammation-associated depression.
Collapse
Affiliation(s)
- Zhe Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Huixia Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhijian Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yu Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Baixuan He
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoli Yao
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Ti-Fei Yuan
- School of Psychology, Nanjing Normal University, Nanjing, China.
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
12
|
Angiotensin Converting Enzyme Inhibitors Ameliorate Brain Inflammation Associated with Microglial Activation: Possible Implications for Alzheimer’s Disease. J Neuroimmune Pharmacol 2016; 11:774-785. [DOI: 10.1007/s11481-016-9703-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
|