1
|
Tartakoff AM. How the concentric organization of the nucleolus and chromatin ensures accuracy of ribosome biogenesis and drives transport. Genetics 2025; 229:iyaf030. [PMID: 40152466 DOI: 10.1093/genetics/iyaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
The biogenetic transport of ribosomal subunit precursors must be conducted with precision to ensure production of functional ribosomes. With a focus on ribosome biogenesis in higher eukaryotic cells, we here discuss the following: (1) the concentric organization of the phases/subcompartments of the nucleus-including chromatin, (2) why the nucleolus reorganizes when ribosomal RNA synthesis is inhibited, and (3) the mechanism responsible for vectorial transport of particulate subunit intermediates between subcompartments. We call attention to evidence that (1) nucleolar proteins can access the entire volume of the nucleus, (2) that the packaging of rDNA is a key determinant of topology, (3) the constancy of contacts between subcompartments, and the likely importance of a Brownian ratchet for imparting both directionality and quality control upon transport. Transport appears to depend on "self-immersion," whereby the surfaces of particulate intermediates successively interact with components of the surrounding milieux, each of which may be thought of as a distinct solvent. The result is a vectorial and ordered process.
Collapse
Affiliation(s)
- Alan M Tartakoff
- Department of Pathology, Case Western Reserve University, 2109 Cornell Road, Cleveland, OH 44106, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Portugal-Calisto D, Geiger AG, Rabl J, Vadas O, Oborská-Oplová M, Mazur J, Richina F, Klingauf-Nerurkar P, Michel E, Leitner A, Boehringer D, Panse VG. An inhibitory segment within G-patch activators tunes Prp43-ATPase activity during ribosome assembly. Nat Commun 2024; 15:10150. [PMID: 39578461 PMCID: PMC11584650 DOI: 10.1038/s41467-024-54584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
Mechanisms by which G-patch activators tune the processive multi-tasking ATP-dependent RNA helicase Prp43 (DHX15 in humans) to productively remodel diverse RNA:protein complexes remain elusive. Here, a comparative study between a herein and previously characterized activators, Tma23 and Pxr1, respectively, defines segments that organize Prp43 function during ribosome assembly. In addition to the activating G-patch, we discover an inhibitory segment within Tma23 and Pxr1, I-patch, that restrains Prp43 ATPase activity. Cryo-electron microscopy and hydrogen-deuterium exchange mass spectrometry show how I-patch binds to the catalytic RecA-like domains to allosterically inhibit Prp43 ATPase activity. Tma23 and Pxr1 contain dimerization segments that organize Prp43 into higher-order complexes. We posit that Prp43 function at discrete locations on pre-ribosomal RNA is coordinated through toggling interactions with G-patch and I-patch segments. This could guarantee measured and timely Prp43 activation, enabling precise control over multiple RNA remodelling events occurring concurrently during ribosome formation.
Collapse
Affiliation(s)
| | | | - Julius Rabl
- Cryo-EM Knowledge Hub, ETH Zurich, Zurich, Switzerland
| | - Oscar Vadas
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Jarosław Mazur
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | | | - Purnima Klingauf-Nerurkar
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Erich Michel
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Alexander Leitner
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | | | - Vikram Govind Panse
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
- Faculty of Science, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Fracchioni G, Vailati S, Grazioli M, Pirota V. Structural Unfolding of G-Quadruplexes: From Small Molecules to Antisense Strategies. Molecules 2024; 29:3488. [PMID: 39124893 PMCID: PMC11314335 DOI: 10.3390/molecules29153488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acid secondary structures that have gathered significant interest in medicinal chemistry over the past two decades due to their unique structural features and potential roles in a variety of biological processes and disorders. Traditionally, research efforts have focused on stabilizing G4s, while in recent years, the attention has progressively shifted to G4 destabilization, unveiling new therapeutic perspectives. This review provides an in-depth overview of recent advances in the development of small molecules, starting with the controversial role of TMPyP4. Moreover, we described effective metal complexes in addition to G4-disrupting small molecules as well as good G4 stabilizing ligands that can destabilize G4s in response to external stimuli. Finally, we presented antisense strategies as a promising approach for destabilizing G4s, with a particular focus on 2'-OMe antisense oligonucleotide, peptide nucleic acid, and locked nucleic acid. Overall, this review emphasizes the importance of understanding G4 dynamics as well as ongoing efforts to develop selective G4-unfolding strategies that can modulate their biological function and therapeutic potential.
Collapse
Affiliation(s)
- Giorgia Fracchioni
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
- G4-INTERACT Group, Universal Scientific Education and Research Network (USERN), 27100 Pavia, Italy
| | - Sabrina Vailati
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
- PhD National Program in One Health Approaches to Infectious Diseases and Life Science Research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Marta Grazioli
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
| | - Valentina Pirota
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
- G4-INTERACT Group, Universal Scientific Education and Research Network (USERN), 27100 Pavia, Italy
| |
Collapse
|
4
|
Kanwal N, Krogh N, Memet I, Lemus-Diaz N, Thomé C, Welp L, Mizi A, Hackert P, Papantonis A, Urlaub H, Nielsen H, Bohnsack K, Bohnsack M. GPATCH4 regulates rRNA and snRNA 2'-O-methylation in both DHX15-dependent and DHX15-independent manners. Nucleic Acids Res 2024; 52:1953-1974. [PMID: 38113271 PMCID: PMC10939407 DOI: 10.1093/nar/gkad1202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
Regulation of RNA helicase activity, often accomplished by protein cofactors, is essential to ensure target specificity within the complex cellular environment. The largest family of RNA helicase cofactors are the G-patch proteins, but the cognate RNA helicases and cellular functions of numerous human G-patch proteins remain elusive. Here, we discover that GPATCH4 is a stimulatory cofactor of DHX15 that interacts with the DEAH box helicase in the nucleolus via residues in its G-patch domain. We reveal that GPATCH4 associates with pre-ribosomal particles, and crosslinks to the transcribed ribosomal DNA locus and precursor ribosomal RNAs as well as binding to small nucleolar- and small Cajal body-associated RNAs that guide rRNA and snRNA modifications. Loss of GPATCH4 impairs 2'-O-methylation at various rRNA and snRNA sites leading to decreased protein synthesis and cell growth. We demonstrate that the regulation of 2'-O-methylation by GPATCH4 is both dependent on, and independent of, its interaction with DHX15. Intriguingly, the ATPase activity of DHX15 is necessary for efficient methylation of DHX15-dependent sites, suggesting a function of DHX15 in regulating snoRNA-guided 2'-O-methylation of rRNA that requires activation by GPATCH4. Overall, our findings extend knowledge on RNA helicase regulation by G-patch proteins and also provide important new insights into the mechanisms regulating installation of rRNA and snRNA modifications, which are essential for ribosome function and pre-mRNA splicing.
Collapse
Affiliation(s)
- Nidhi Kanwal
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, 3B Blegdamsvej, 2200N Copenhagen, Denmark
| | - Indira Memet
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Nicolas Lemus-Diaz
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Chairini C Thomé
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Luisa M Welp
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077 Göttingen, Germany
- Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 35075 Göttingen, Germany
| | - Athanasia Mizi
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Straße 40, 35075 Göttingen, Germany
| | - Philipp Hackert
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Straße 40, 35075 Göttingen, Germany
| | - Henning Urlaub
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077 Göttingen, Germany
- Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 35075 Göttingen, Germany
- Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, 3B Blegdamsvej, 2200N Copenhagen, Denmark
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
- Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
- Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|