1
|
Bhattacharya I, Hautke A, Rossi E, Stevens L, Marick A, Bera A, Das T, Ferrarini A, Sulpizi M, Ebbinghaus S, Mitra RK. Non-monotonous Concentration Dependent Solvation of ATP Could Help to Rationalize Its Anomalous Impact on Various Biophysical Processes. J Phys Chem Lett 2025; 16:4305-4314. [PMID: 40266569 DOI: 10.1021/acs.jpclett.5c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Adenosine triphosphate (ATP), one of the biologically most important molecules, offers certain anomalous behavior during folding and liquid-liquid phase separation of proteins and RNAs. ATP can act as a "biological hydrotrope", i.e., it solubilizes hydrophobic proteins or other biomolecules. However, upon exceeding the physiological concentration range (2-10 mM), aggregation of proteins and RNAs is promoted, an effect that is not understood yet. Here we present a time-domain and frequency-domain Terahertz (THz) spectroscopic investigation to understand the solvation of ATP with varying concentration in the range of 2-15 mM. Both time and frequency domain studies of the solvation of adenosine (Adn), sodium triphosphate (TPP), and ATP elucidate that both the adenosine as well as the triphosphate moiety contribute to nearly equal propensity towards the solvation structure of ATP at low concentrations. However, at higher concentrations (>10 mM), the effect of the adenosine moiety dominates, which leads to a more structured solvation shell followed by slower relaxation dynamics. This is due to the triphosphate-driven ATP aggregation with a reduced amount of water-exposed triphosphate groups, as revealed by molecular dynamics simulations. These observations could lead to an understanding of the complex role of ATP in different biological systems.
Collapse
Affiliation(s)
- Indrani Bhattacharya
- S. N. Bose National Centre for Basic Sciences, Department of Chemical, Biological and Macromolecular Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700098, India
| | - Alexander Hautke
- Chair of Biophysical Chemistry, Ruhr-Universität Bochum, and Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, 44780 Bochum, Germany
| | - Emma Rossi
- Università degli Studi di Padova, Department of Chemical Sciences, 35131 Padova, Italy
- Physics Department, Ruhr-Universität Bochum, Universitätstrasse 150, 44780 Bochum, Germany
| | - Laurie Stevens
- Physics Department, Ruhr-Universität Bochum, Universitätstrasse 150, 44780 Bochum, Germany
| | - Aritra Marick
- S. N. Bose National Centre for Basic Sciences, Department of Chemical, Biological and Macromolecular Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700098, India
| | - Asesh Bera
- S. N. Bose National Centre for Basic Sciences, Department of Chemical, Biological and Macromolecular Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700098, India
| | - Tanushree Das
- S. N. Bose National Centre for Basic Sciences, Department of Chemical, Biological and Macromolecular Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700098, India
| | - Alberta Ferrarini
- Università degli Studi di Padova, Department of Chemical Sciences, 35131 Padova, Italy
| | - Marialore Sulpizi
- Physics Department, Ruhr-Universität Bochum, Universitätstrasse 150, 44780 Bochum, Germany
| | - Simon Ebbinghaus
- Chair of Biophysical Chemistry, Ruhr-Universität Bochum, and Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, 44780 Bochum, Germany
| | - Rajib Kumar Mitra
- S. N. Bose National Centre for Basic Sciences, Department of Chemical, Biological and Macromolecular Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700098, India
| |
Collapse
|
2
|
Zhang L, Liu T. ATP-Pred: Prediction of Protein-ATP Binding Residues via Fusion of Residue-Level Embeddings and Kolmogorov-Arnold Network. J Chem Inf Model 2025; 65:3812-3826. [PMID: 40119803 DOI: 10.1021/acs.jcim.5c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
Accurately identifying protein-ATP binding residues is essential for understanding biological processes and designing drugs. However, current sequence-based methods have limitations, such as difficulties in extracting discriminative features and the need for more efficient algorithms. Additionally, methods based on multiple sequence alignments often face challenges in handling large-scale predictions. To address these issues, we developed ATP-Pred, a sequence-based method for predicting ATP-binding residues in proteins. This model applies transfer learning by using two recently developed pretrain protein language models, Ankh and ProstT5, to extract residue-level embeddings that capture protein functionality. ATP-Pred also integrates a CNN-BiLSTM network and a Kolmogorov-Arnold network to build the prediction model. To handle data imbalance, we introduced a weighted focal loss function. Experimental results on three independent test data sets showed that ATP-Pred outperforms most existing methods. Its generalizability was further validated on four protein-mononucleotide binding residue data sets, where it delivered promising results. These findings suggest that ATP-Pred is a robust and reliable predictor.
Collapse
Affiliation(s)
- Lingrong Zhang
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Taigang Liu
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
3
|
Song J. In the Beginning: Let Hydration Be Coded in Proteins for Manifestation and Modulation by Salts and Adenosine Triphosphate. Int J Mol Sci 2024; 25:12817. [PMID: 39684527 DOI: 10.3390/ijms252312817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Water exists in the beginning and hydrates all matter. Life emerged in water, requiring three essential components in compartmentalized spaces: (1) universal energy sources driving biochemical reactions and processes, (2) molecules that store, encode, and transmit information, and (3) functional players carrying out biological activities and structural organization. Phosphorus has been selected to create adenosine triphosphate (ATP) as the universal energy currency, nucleic acids for genetic information storage and transmission, and phospholipids for cellular compartmentalization. Meanwhile, proteins composed of 20 α-amino acids have evolved into extremely diverse three-dimensional forms, including folded domains, intrinsically disordered regions (IDRs), and membrane-bound forms, to fulfill functional and structural roles. This review examines several unique findings: (1) insoluble proteins, including membrane proteins, can become solubilized in unsalted water, while folded cytosolic proteins can acquire membrane-inserting capacity; (2) Hofmeister salts affect protein stability by targeting hydration; (3) ATP biphasically modulates liquid-liquid phase separation (LLPS) of IDRs; (4) ATP antagonizes crowding-induced protein destabilization; and (5) ATP and triphosphates have the highest efficiency in inducing protein folding. These findings imply the following: (1) hydration might be encoded in protein sequences, central to manifestation and modulation of protein structures, dynamics, and functionalities; (2) phosphate anions have a unique capacity in enhancing μs-ms protein dynamics, likely through ionic state exchanges in the hydration shell, underpinning ATP, polyphosphate, and nucleic acids as molecular chaperones for protein folding; and (3) ATP, by linking triphosphate with adenosine, has acquired the capacity to spacetime-specifically release energy and modulate protein hydration, thus possessing myriad energy-dependent and -independent functions. In light of the success of AlphaFolds in accurately predicting protein structures by neural networks that store information as distributed patterns across nodes, a fundamental question arises: Could cellular networks also handle information similarly but with more intricate coding, diverse topological architectures, and spacetime-specific ATP energy supply in membrane-compartmentalized aqueous environments?
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
4
|
Reiter RJ, Sharma RN, Manucha W, Rosales-Corral S, Almieda Chuffa LGD, Loh D, Luchetti F, Balduini W, Govitrapong P. Dysfunctional mitochondria in age-related neurodegeneration: Utility of melatonin as an antioxidant treatment. Ageing Res Rev 2024; 101:102480. [PMID: 39236857 DOI: 10.1016/j.arr.2024.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Mitochondria functionally degrade as neurons age. Degenerative changes cause inefficient oxidative phosphorylation (OXPHOS) and elevated electron leakage from the electron transport chain (ETC) promoting increased intramitochondrial generation of damaging reactive oxygen and reactive nitrogen species (ROS and RNS). The associated progressive accumulation of molecular damage causes an increasingly rapid decline in mitochondrial physiology contributing to aging. Melatonin, a multifunctional free radical scavenger and indirect antioxidant, is synthesized in the mitochondrial matrix of neurons. Melatonin reduces electron leakage from the ETC and elevates ATP production; it also detoxifies ROS/RNS and via the SIRT3/FOXO pathway it upregulates activities of superoxide dismutase 2 and glutathione peroxidase. Melatonin also influences glucose processing by neurons. In neurogenerative diseases, neurons often adopt Warburg-type metabolism which excludes pyruvate from the mitochondria causing reduced intramitochondrial acetyl coenzyme A production. Acetyl coenzyme A supports the citric acid cycle and OXPHOS. Additionally, acetyl coenzyme A is a required co-substrate for arylalkylamine-N-acetyl transferase, which rate limits melatonin synthesis; therefore, melatonin production is diminished in cells that experience Warburg-type metabolism making mitochondria more vulnerable to oxidative stress. Moreover, endogenously produced melatonin diminishes during aging, further increasing oxidative damage to mitochondrial components. More normal mitochondrial physiology is preserved in aging neurons with melatonin supplementation.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA.
| | - Ramaswamy N Sharma
- Applied Biomedical Sciences, University of the Incarnate Word, School of Osteopathic Medicine, San Antonio, TX, USA.
| | - Walter Manucha
- Instituto de Medicina y Biologia Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Mendoza 5500, Argentina.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico.
| | - Luiz Gustavo de Almieda Chuffa
- Departamento de Biologia Estrutural e Funcional, Setor de Anatomia - Instituto de Biociências, IBB/UNESP, Campus Botucatu, Botucatu, São Paulo, Brazil.
| | - Doris Loh
- Independent Researcher, Marble Falls, TX, USA.
| | - Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Laksi, Bangkok, Thailand.
| |
Collapse
|
5
|
Paoletti F. ATP binding to Nerve Growth Factor (NGF) and pro-Nerve Growth Factor (proNGF): an endogenous molecular switch modulating neurotrophins activity. Biochem Soc Trans 2024; 52:1293-1304. [PMID: 38716884 DOI: 10.1042/bst20231089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 06/27/2024]
Abstract
ATP has recently been reconsidered as a molecule with functional properties which go beyond its recognized role of the energetic driver of the cell. ATP has been described as an allosteric modulator as well as a biological hydrotrope with anti-aggregation properties in the crowded cellular environment. The role of ATP as a modulator of the homeostasis of the neurotrophins (NTs), a growth factor protein family whose most known member is the nerve growth factor (NGF), has been investigated. The modulation of NTs by small endogenous ligands is still a scarcely described area, with few papers reporting on the topic, and very few reports on the molecular determinants of these interactions. However, a detailed atomistic description of the NTs interaction landscape is of urgent need, aiming at the identification of novel molecules as potential therapeutics and considering the wide range of potential pharmacological applications for NGF and its family members. This mini-review will focus on the unique cartography casting the interactions of the endogenous ligand ATP, in the interaction with NGF as well as with its precursor proNGF. These interactions revealed interesting features of the ATP binding and distinct differences in the binding mode between the highly structured mature NGF and its precursor, proNGF, which is characterized by an intrinsically unstructured domain. The overview on the recent available data will be presented, together with the future perspectives on the field.
Collapse
Affiliation(s)
- Francesca Paoletti
- Institute of Crystallography - C.N.R. - Trieste Outstation, Area Science Park - Basovizza, S.S.14 - Km. 163.5, I-34149 Trieste, Italy
| |
Collapse
|
6
|
López-González I, Oseguera-López I, Castillo R, Darszon A. Influence of extracellular ATP on mammalian sperm physiology. Reprod Fertil Dev 2024; 36:RD23227. [PMID: 38870344 DOI: 10.1071/rd23227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
In addition to its central role in cellular metabolism, adenosine 5'-triphosphate (ATP) is an important extracellular signalling molecule involved in various physiological processes. In reproduction, extracellular ATP participates in both autocrine and paracrine paths regulating gametogenesis, gamete maturation and fertilisation. This review focusses on how extracellular ATP modulates sperm physiology with emphasis on the mammalian acrosome reaction. The presence of extracellular ATP in the reproductive tract is primarily determined by the ion channels and transporters that influence its movement within the cells comprising the tract. The main targets of extracellular ATP in spermatozoa are its own transporters, particularly species-specific sperm purinergic receptors. We also discuss notable phenotypes from knock-out mouse models and human Mendelian inheritance related to ATP release mechanisms, along with immunological, proteomic, and functional observations regarding sperm purinergic receptors and their involvement in sperm signalling.
Collapse
Affiliation(s)
- I López-González
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| | - I Oseguera-López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| | - R Castillo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| | - A Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| |
Collapse
|
7
|
Song J. Adenosine Triphosphate: The Primordial Molecule That Controls Protein Homeostasis and Shapes the Genome-Proteome Interface. Biomolecules 2024; 14:500. [PMID: 38672516 PMCID: PMC11048592 DOI: 10.3390/biom14040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Adenosine triphosphate (ATP) acts as the universal energy currency that drives various biological processes, while nucleic acids function to store and transmit genetic information for all living organisms. Liquid-liquid phase separation (LLPS) represents the common principle for the formation of membrane-less organelles (MLOs) composed of proteins rich in intrinsically disordered regions (IDRs) and nucleic acids. Currently, while IDRs are well recognized to facilitate LLPS through dynamic and multivalent interactions, the precise mechanisms by which ATP and nucleic acids affect LLPS still remain elusive. This review summarizes recent NMR results on the LLPS of human FUS, TDP-43, and the viral nucleocapsid (N) protein of SARS-CoV-2, as modulated by ATP and nucleic acids, revealing the following: (1) ATP binds to folded domains overlapping with nucleic-acid-binding interfaces; (2) ATP and nucleic acids interplay to biphasically modulate LLPS by competitively binding to overlapping pockets of folded domains and Arg/Lys within IDRs; (3) ATP energy-independently induces protein folding with the highest efficiency known so far. As ATP likely emerged in the prebiotic monomeric world, while LLPS represents a pivotal mechanism to concentrate and compartmentalize rare molecules for forming primordial cells, ATP appears to control protein homeostasis and shape genome-proteome interfaces throughout the evolutionary trajectory, from prebiotic origins to modern cells.
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
8
|
Do TM, Horinek D, Matubayasi N. How ATP suppresses the fibrillation of amyloid peptides: analysis of the free-energy contributions. Phys Chem Chem Phys 2024; 26:11880-11892. [PMID: 38568008 DOI: 10.1039/d4cp00179f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Recent experiments have revealed that adenosine triphosphate (ATP) suppresses the fibrillation of amyloid peptides - a process closely linked to neurodegenerative diseases such as Alzheimer's and Parkinson's. Apart from the adsorption of ATP onto amyloid peptides, the molecular understanding is still limited, leaving the underlying mechanism for the fibrillation suppression by ATP largely unclear, especially in regards to the molecular energetics. Here we provide an explanation at the molecular scale by quantifying the free energies using all-atom molecular dynamics simulations. We found that the changes of the free energies due to the addition of ATP lead to a significant equilibrium shift towards monomeric peptides in agreement with experiments. Despite ATP being a highly charged species, the decomposition of the free energies reveals that the van der Waals interactions with the peptide are decisive in determining the relative stabilization of the monomeric state. While the phosphate moiety exhibits strong electrostatic interactions, the compensation by the water solvent results in a minor, overall Coulomb contribution. Our quantitative analysis of the free energies identifies which intermolecular interactions are responsible for the suppression of the amyloid fibril formation by ATP and offers a promising method to analyze the roles of similarly complex cosolvents in aggregation processes.
Collapse
Affiliation(s)
- Tuan Minh Do
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 560-8531 Toyonaka, Osaka, Japan.
| | - Dominik Horinek
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 560-8531 Toyonaka, Osaka, Japan.
| |
Collapse
|
9
|
Dec R, Dzwolak W, Winter R. From a Droplet to a Fibril and from a Fibril to a Droplet: Intertwined Transition Pathways in Highly Dynamic Enzyme-Modulated Peptide-Adenosine Triphosphate Systems. J Am Chem Soc 2024; 146:6045-6052. [PMID: 38394622 DOI: 10.1021/jacs.3c13152] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Many cellular coassemblies of proteins and polynucleotides facilitate liquid-liquid phase separation (LLPS) and the subsequent self-assembly of disease-associated amyloid fibrils within the liquid droplets. Here, we explore the dynamics of coupled phase and conformational transitions of model adenosine triphosphate (ATP)-binding peptides, ACC1-13Kn, consisting of the potent amyloidogenic fragment of insulin's A-chain (ACC1-13) merged with oligolysine segments of various lengths (Kn, n = 16, 24, 40). The self-assembly of ATP-stabilized amyloid fibrils is preceded by LLPS for peptides with sufficiently long oligolysine segments. The two-component droplets and fibrils are in dynamic equilibria with free ATP and monomeric peptides, which makes them susceptible to ATP-hydrolyzing apyrase and ACC1-13Kn-digesting proteinase K. Both enzymes are capable of rapid disassembly of amyloid fibrils, producing either monomers of the peptide (apyrase) or free ATP released together with cleaved-off oligolysine segments (proteinase K). In the latter case, the enzyme-sequestered Kn segments form subsequent droplets with the co-released ATP, resulting in an unusual fibril-to-droplet transition. In support of the highly dynamic nature of the aggregate-monomer equilibria, addition of superstoichiometric amounts of free peptide to the ACC1-13Kn-ATP coaggregate causes its disassembly. Our results show that the droplet state is not merely an intermediate phase on the pathway to the amyloid aggregate but may also constitute the final phase of a complex amyloidogenic protein misfolding scenario rich in highly degraded protein fragments incompetent to transition again into fibrils.
Collapse
Affiliation(s)
- Robert Dec
- Physical Chemistry I-Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, Dortmund 44227, Germany
| | - Wojciech Dzwolak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteur Street 1, Warsaw 02-093, Poland
| | - Roland Winter
- Physical Chemistry I-Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, Dortmund 44227, Germany
| |
Collapse
|