1
|
Li X, Zhang M, Feng J, Wang J, Wang K, Ju B, Wang X, Pang G. Mechanisms of Xuefu Zhuyu Tang in the Treatment of Diabetic Erectile Dysfunction in Rats Through the Regulation of Vascular Endothelial Function by CaSR/PLC/PKC and MEK/ERK/RSK Pathways. Am J Mens Health 2024; 18:15579883241277423. [PMID: 39434501 PMCID: PMC11497541 DOI: 10.1177/15579883241277423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 10/23/2024] Open
Abstract
Xuefu zhuyu Tang (XFZYT) is a classic formula used for promoting blood circulation and resolving blood stasis in Traditional Chinese Medicine. Clinical data have indicated that XFZYT plays a significant therapeutic role in diabetes-induced erectile dysfunction (DIED) disease, but the underlying mechanism remains elusive. Male Sprague-Dawley (SD) rats were randomly categorized into normal, model, and treatment groups. The diabetic rat model was established via intraperitoneal injection of streptozotocin. DIED rats were screened using apomorphine, and the number of erections was measured after 8 weeks of XFZYT treatment. Serum nitric oxide (NO) and endothelin-1 levels as well as penile tissue structure alterations were assessed by hematoxylin-eosin staining and electron microscopy. CaSR/PLC/PKC and MEK/ERK/RSK pathway-related proteins in the penile tissue were detected by western blotting (WB) analysis and polymerase chain reaction (PCR). Compared with the blank group, the model group rats showed a significant decrease in weight and erectile function. The pathological damage in the penile tissues of the model rats was indicated by a significantly decreased serum NO level and an increased endothelin-1 content. After treatment with XFZYT, the protein expression of CaSR, PLCβ1, PKCβ, MEK1, ERK1, and RSK1 in the penile tissue was significantly increased. Overall, the treatment group showed significant improvements in the evaluated indexes. In conclusion, this study revealed that XFZYT improves erectile function in diabetic rats, and the underlying mechanism might be linked with the regulation of CaSR/PLC/PKC and related molecules of the MEK/ERK/RSK pathway, which promotes the vascular endothelial diastolic effect.
Collapse
Affiliation(s)
- Xiao Li
- The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingzhao Zhang
- The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, China
| | - Junlong Feng
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jisheng Wang
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kaifeng Wang
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, China
| | - Baojun Ju
- The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiangyu Wang
- The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, China
| | - Guoming Pang
- The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, China
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, China
| |
Collapse
|
2
|
Soloviev A, Sydorenko V. Oxidative and Nitrous Stress Underlies Vascular Malfunction Induced by Ionizing Radiation and Diabetes. Cardiovasc Toxicol 2024; 24:776-788. [PMID: 38916845 DOI: 10.1007/s12012-024-09878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024]
Abstract
Oxidative stress results from the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in quantities exceeding the potential activity of the body's antioxidant system and is one of the risk factors for the development of vascular dysfunction in diabetes and exposure to ionizing radiation. Being the secondary products of normal aerobic metabolism in living organisms, ROS and RNS act as signaling molecules that play an important role in the regulation of vital organism functions. Meanwhile, in high concentrations, these compounds are toxic and disrupt various metabolic pathways. The various stress factors (hyperglycemia, gamma-irradiation, etc.) trigger free oxygen and nitrogen radicals accumulation in cells that are capable to damage almost all cellular components including ion channels and transporters such as Na+/K+-ATPase, BKCa, and TRP channels. Vascular dysfunctions are governed by interaction of ROS and RNS. For example, the reaction of ROS with NO produces peroxynitrite (ONOO-), which not only oxidizes DNA, cellular proteins, and lipids, but also disrupts important signaling pathways that regulate the cation channel functions in the vascular endothelium. Further increasing in ROS levels and formation of ONOO- leads to reduced NO bioavailability and causes endothelial dysfunction. Thus, imbalance of ROS and RNS and their affect on membrane ion channels plays an important role in the pathogenesis of vascular dysfunction associated with various disorders.
Collapse
Affiliation(s)
- Anatoly Soloviev
- Department for Pharmacology of Cellular Signaling Systems and Experimental Therapeutics, Institute of Pharmacology and Toxicology, National Academy of Medical Science, Kyiv, Ukraine.
| | - Vadym Sydorenko
- Department for Pharmacology of Cellular Signaling Systems and Experimental Therapeutics, Institute of Pharmacology and Toxicology, National Academy of Medical Science, Kyiv, Ukraine
| |
Collapse
|
3
|
Qin P, He C, Ye P, Li Q, Cai C, Li Y. PKCδ regulates the vascular biology in diabetic atherosclerosis. Cell Commun Signal 2023; 21:330. [PMID: 37974282 PMCID: PMC10652453 DOI: 10.1186/s12964-023-01361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Diabetes mellitus, known for its complications, especially vascular complications, is becoming a globally serious social problem. Atherosclerosis has been recognized as a common vascular complication mechanism in diabetes. The diacylglycerol (DAG)-protein kinase C (PKC) pathway plays an important role in atherosclerosis. PKCs can be divided into three subgroups: conventional PKCs (cPKCs), novel PKCs (nPKCs), and atypical PKCs (aPKCs). The aim of this review is to provide a comprehensive overview of the role of the PKCδ pathway, an isoform of nPKC, in regulating the function of endothelial cells, vascular smooth muscle cells, and macrophages in diabetic atherosclerosis. In addition, potential therapeutic targets regarding the PKCδ pathway are summarized. Video Abstract.
Collapse
Affiliation(s)
- Peiliang Qin
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Changhuai He
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pin Ye
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuanqi Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Yin H, Shi A, Wu J. Platelet-Activating Factor Promotes the Development of Non-Alcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2022; 15:2003-2030. [PMID: 35837578 PMCID: PMC9275506 DOI: 10.2147/dmso.s367483] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifaceted clinicopathological syndrome characterised by excessive hepatic lipid accumulation that causes steatosis, excluding alcoholic factors. Platelet-activating factor (PAF), a biologically active lipid transmitter, induces platelet activation upon binding to the PAF receptor. Recent studies have found that PAF is associated with gamma-glutamyl transferase, which is an indicator of liver disease. Moreover, PAF can stimulate hepatic lipid synthesis and cause hypertriglyceridaemia. Furthermore, the knockdown of the PAF receptor gene in the animal models of NAFLD helped reduce the inflammatory response, improve glucose homeostasis and delay the development of NAFLD. These findings suggest that PAF is associated with NAFLD development. According to reports, patients with NAFLD or animal models have marked platelet activation abnormalities, mainly manifested as enhanced platelet adhesion and aggregation and altered blood rheology. Pharmacological interventions were accompanied by remission of abnormal platelet activation and significant improvement in liver function and lipids in the animal model of NAFLD. These confirm that platelet activation may accompany a critical importance in NAFLD development and progression. However, how PAFs are involved in the NAFLD signalling pathway needs further investigation. In this paper, we review the relevant literature in recent years and discuss the role played by PAF in NAFLD development. It is important to elucidate the pathogenesis of NAFLD and to find effective interventions for treatment.
Collapse
Affiliation(s)
- Hang Yin
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
| | - Anhua Shi
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
| | - Junzi Wu
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
- Correspondence: Junzi Wu; Anhua Shi, Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China, Tel/Fax +86 187 8855 7524; +86 138 8885 0813, Email ;
| |
Collapse
|
5
|
Yu C, Xiao JH. The Keap1-Nrf2 System: A Mediator between Oxidative Stress and Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6635460. [PMID: 34012501 PMCID: PMC8106771 DOI: 10.1155/2021/6635460] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
Oxidative stress, a term that describes the imbalance between oxidants and antioxidants, leads to the disruption of redox signals and causes molecular damage. Increased oxidative stress from diverse sources has been implicated in most senescence-related diseases and in aging itself. The Kelch-like ECH-associated protein 1- (Keap1-) nuclear factor-erythroid 2-related factor 2 (Nrf2) system can be used to monitor oxidative stress; Keap1-Nrf2 is closely associated with aging and controls the transcription of multiple antioxidant enzymes. Simultaneously, Keap1-Nrf2 signaling is also modulated by a more complex regulatory network, including phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), protein kinase C, and mitogen-activated protein kinase. This review presents more information on aging-related molecular mechanisms involving Keap1-Nrf2. Furthermore, we highlight several major signals involved in Nrf2 unbinding from Keap1, including cysteine modification of Keap1 and phosphorylation of Nrf2, PI3K/Akt/glycogen synthase kinase 3β, sequestosome 1, Bach1, and c-Myc. Additionally, we discuss the direct interaction between Keap1-Nrf2 and the mammalian target of rapamycin pathway. In summary, we focus on recent progress in research on the Keap1-Nrf2 system involving oxidative stress and aging, providing an empirical basis for the development of antiaging drugs.
Collapse
Affiliation(s)
- Chao Yu
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| | - Jian-Hui Xiao
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
- Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| |
Collapse
|
6
|
Yang M, Chen Z, Xiang S, Xia F, Tang W, Yao X, Zhou B. Hugan Qingzhi medication ameliorates free fatty acid-induced L02 hepatocyte endoplasmic reticulum stress by regulating the activation of PKC-δ. BMC Complement Med Ther 2020; 20:377. [PMID: 33308192 PMCID: PMC7730760 DOI: 10.1186/s12906-020-03164-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Background Previous studies have found that Hugan Qingzhi tablet (HQT) has significant lipid-lowering and antioxidant effects on non-alcoholic fatty liver disease (NAFLD). Moreover, the results of proteomic analysis confirmed that various proteins in endoplasmic reticulum stress (ERS) pathway were activated and recovered by HQT. However, its mechanism remains confused. The purpose of this study was to explore the effects of HQT-medicated serum on hepatic ERS and its relevant mechanisms. Methods L02 cells were induced by Free Fatty Acid (FFA) for 24 h to establish a model of hepatic ERS and pretreated with the drug-medicated rat serum for 24 h. Accumulation of intracellular lipid was evaluated using Oil Red O staining and Triglyceride detection kit. The morphological changes of ER were observed by TEM. PKC-δ was silenced by specific siRNA. Western blot and RT-qPCR were applied to detect the expression of markers related to ERS, calcium disorder, steatosis and insulin resistance. The fluorescence of Ca2+ influx was recorded using fluorescence spectrophotometer. Results HQT-medicated serum significantly decreased the intracellular TG content. Furthermore, it caused significant reduction in the expression of ERS markers and an improvement in ER structure of L02 cells. PKC-δ was activated into phosphorylated PKC-δ in FFA-induced L02 hepatocytes while these changes can be reversed by HQT-medicated serum. Silencing PKC-δ in L02 cells can restore the expression and activity of SERCA2 in ER and down-regulate the expression of IP3R protein to maintain intracellular calcium homeostasis, so as to relieve FFA-induced ERS and its lipid accumulation and insulin resistance. Conclusions The results concluded that HQT-medicated serum exerts protective effects against hepatic ERS, steatosis and insulin resistance in FFA-induced L02 hepatocyte. And its potential mechanism might be down-regulating the activation of PKC-δ and stabilization of intracellular calcium. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-020-03164-3.
Collapse
Affiliation(s)
- Miaoting Yang
- Department of Pharmacy, People's Hospital of Longhua, Shenzhen, 518109, Guangdong, China
| | - Zhijuan Chen
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Shijian Xiang
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Fan Xia
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Waijiao Tang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Xiaorui Yao
- Department of Pharmacy, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, 515041, Guangdong, China
| | - Benjie Zhou
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
7
|
Soloviev AI, Kizub IV. Mechanisms of vascular dysfunction evoked by ionizing radiation and possible targets for its pharmacological correction. Biochem Pharmacol 2018; 159:121-139. [PMID: 30508525 DOI: 10.1016/j.bcp.2018.11.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022]
Abstract
Ionizing radiation (IR) leads to a variety of the cardiovascular diseases, including the arterial hypertension. A number of studies have demonstrated that blood vessels represent important target for IR, and the endothelium is one of the most vulnerable components of the vascular wall. IR causes an inhibition of nitric oxide (NO)-mediated endothelium-dependent vasodilatation and generation of reactive oxygen (ROS) and nitrogen (RNS) species trigger this process. Inhibition of NO-mediated vasodilatation could be due to endothelial NO synthase (eNOS) down-regulation, inactivation of endothelium-derived NO, and abnormalities in diffusion of NO from the endothelial cells (ECs) leading to a decrease in NO bioavailability. Beside this, IR suppresses endothelial large conductance Ca2+-activated K+ channels (BKCa) activity, which control NO synthesis. IR also leads to inhibition of the BKCa current in vascular smooth muscle cells (SMCs) which is mediated by protein kinase C (PKC). On the other hand, IR-evoked enhanced vascular contractility may result from PKC-mediated increase in SMCs myofilament Ca2+ sensitivity. Also, IR evokes vascular wall inflammation and atherosclerosis development. Vascular function damaged by IR can be effectively restored by quercetin-filled phosphatidylcholine liposomes and mesenchymal stem cells injection. Using RNA-interference technique targeted to different PKC isoforms can also be a perspective approach for pharmacological treatment of IR-induced vascular dysfunction.
Collapse
Affiliation(s)
- Anatoly I Soloviev
- Department of Pharmacology of Cellular Signaling Systems and Experimental Therapy, Institute of Pharmacology and Toxicology, National Academy of Medical Sciences of Ukraine, 14 Eugene Pottier Street, Kiev 03068, Ukraine
| | - Igor V Kizub
- Department of Pharmacology, New York Medical College, 15 Dana Road, Valhalla 10595, NY, United States.
| |
Collapse
|
8
|
杨 妙, 陈 芝, 肖 淳, 唐 外, 周 本. [Effects of sera of rats fed with Huganqingzhi tablets on endoplasmic reticulum stress in a HepG2 cell model of nonalcoholic fatty liver disease]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1277-1287. [PMID: 30514673 PMCID: PMC6744118 DOI: 10.12122/j.issn.1673-4254.2018.11.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effects of sera from rats fed with Huganqingzhi tablets (HGT) on endoplasmic reticulum (ER) stress in a steatotic hepatocyte model of free fatty acids (FFAs)-induced nonalcoholic fatty liver disease (NAFLD) and explore the possible mechanism. METHODS FFAs prepared by mixing oleic acid and palmitic acid at the ratio of 2:1. HepG2 cells were treated with the sera from rats fed with low-, moderate-or high-dose HGT (HGT sera) or sera of rats fed with fenofibrate (fenofibrate sera), followed by treatment with 1 mmol/L FFAs for 24 h to induce hepatic steatosis. Oil red O staining was used to observe the distribution of lipid droplets in the cells. The biochemical parameters including triglyceride (TG), lactated hydrogenase (LDH), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were measured using a commercial kit. The morphological changes of the ER in the cells were observed using transmission electron microscopy. The protein/mRNA expressions of ER stress-related signal molecules including GRP78, PERK, p-PERK, ATF6, ATF4, CASPASE-12, CHOP, XBP-1, PKC, and p-PKC-δ were detected using Western blotting and/or quantitative real-time PCR (qRT-PCR). The changes in the protein expressions of GRP78, p-PERK, CASPASE-12 and CHOP were also detected in cells with transient transfection of PKC-δ siRNA for PKC-δ knockdown. RESULTS Compared with the control cells, the cells treated with FFAs showed significantly increased levels of TG, AST, and ALT (P < 0.05). Compared with FFAs-treated cells, the cells pretreated with HGT sera or fenofibrate sera all showed significantly decreased TG, AST and ALT levels (P < 0.05), reduced accumulation of the lipid droplets (P < 0.05), and lowered protein or mRNA expression levels of GRP78, p-PERK, ATF6, ATF4, CHOP, CASPASE-12, XBP-1 and p-PKC-δ (P < 0.05). PKC-δ knockdown caused significantly reduced protein expressions of GRP78, p-PERK, CASPASE-12 and CHOP in the cells with FFA-induced hepatic steatosis (P < 0.001); treatment with high-dose HGT serum more significantly reduced the expressions of GRP78 (P < 0.001) and P-PERK (P < 0.01) in FFAs-induced cells with PKC-δ knockdown. CONCLUSIONS HGT serum can effectively prevent FFAs-induced steatosis in HepG2 cells by alleviating ER stress, in which PKC-δ may act as an important target.
Collapse
Affiliation(s)
- 妙婷 杨
- 南方医科大学珠江医院药学部,广东 广州 510282Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 芝娟 陈
- 南方医科大学珠江医院药学部,广东 广州 510282Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 淳欣 肖
- 深圳市贝美药业有限公司,广东 深圳 518057Shenzhen Beimei Pharmaceutical Co., Ltd, Shenzhen 518057, China
| | - 外姣 唐
- 南方医科大学珠江医院药学部,广东 广州 510282Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 本杰 周
- 南方医科大学珠江医院药学部,广东 广州 510282Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- 中山大学附属第七医院药学部,广东 深圳 518017Department of Pharmacy, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518017, China
| |
Collapse
|
9
|
Affiliation(s)
- S A Kodirov
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
10
|
Lucke-Wold BP, Turner RC, Logsdon AF, Simpkins JW, Alkon DL, Smith KE, Chen YW, Tan Z, Huber JD, Rosen CL. Common mechanisms of Alzheimer's disease and ischemic stroke: the role of protein kinase C in the progression of age-related neurodegeneration. J Alzheimers Dis 2015; 43:711-724. [PMID: 25114088 PMCID: PMC4446718 DOI: 10.3233/jad-141422] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ischemic stroke and Alzheimer's disease (AD), despite being distinct disease entities, share numerous pathophysiological mechanisms such as those mediated by inflammation, immune exhaustion, and neurovascular unit compromise. An important shared mechanistic link is acute and chronic changes in protein kinase C (PKC) activity. PKC isoforms have widespread functions important for memory, blood-brain barrier maintenance, and injury repair that change as the body ages. Disease states accelerate PKC functional modifications. Mutated forms of PKC can contribute to neurodegeneration and cognitive decline. In some cases the PKC isoforms are still functional but are not successfully translocated to appropriate locations within the cell. The deficits in proper PKC translocation worsen stroke outcome and amyloid-β toxicity. Cross talk between the innate immune system and PKC pathways contribute to the vascular status within the aging brain. Unfortunately, comorbidities such as diabetes, obesity, and hypertension disrupt normal communication between the two systems. The focus of this review is to highlight what is known about PKC function, how isoforms of PKC change with age, and what additional alterations are consequences of stroke and AD. The goal is to highlight future therapeutic targets that can be applied to both the treatment and prevention of neurologic disease. Although the pathology of ischemic stroke and AD are different, the similarity in PKC responses warrants further investigation, especially as PKC-dependent events may serve as an important connection linking age-related brain injury.
Collapse
Affiliation(s)
- Brandon P. Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Ryan C. Turner
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Aric F. Logsdon
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - James W. Simpkins
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Daniel L. Alkon
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA
| | - Kelly E. Smith
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - Yi-Wen Chen
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Zhenjun Tan
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jason D. Huber
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - Charles L. Rosen
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
11
|
Wang F, Guo X, Shen X, Kream RM, Mantione KJ, Stefano GB. Vascular dysfunction associated with type 2 diabetes and Alzheimer's disease: a potential etiological linkage. Med Sci Monit Basic Res 2014; 20:118-29. [PMID: 25082505 PMCID: PMC4138067 DOI: 10.12659/msmbr.891278] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The endothelium performs a crucial role in maintaining vascular integrity leading to whole organ metabolic homeostasis. Endothelial dysfunction represents a key etiological factor leading to moderate to severe vasculopathies observed in both Type 2 diabetic and Alzheimer’s Disease (AD) patients. Accordingly, evidence-based epidemiological factors support a compelling hypothesis stating that metabolic rundown encountered in Type 2 diabetes engenders severe cerebral vascular insufficiencies that are causally linked to long term neural degenerative processes in AD. Of mechanistic importance, Type 2 diabetes engenders an immunologically mediated chronic pro-inflammatory state involving interactive deleterious effects of leukocyte-derived cytokines and endothelial-derived chemotactic agents leading to vascular and whole organ dysfunction. The long term negative consequences of vascular pro-inflammatory processes on the integrity of CNS basal forebrain neuronal populations mediating complex cognitive functions establish a striking temporal comorbidity of AD with Type 2 diabetes. Extensive biomedical evidence supports the pivotal multi-functional role of constitutive nitric oxide (NO) production and release as a critical vasodilatory, anti-inflammatory, and anti-oxidant, mechanism within the vascular endothelium. Within this context, we currently review the functional contributions of dysregulated endothelial NO expression to the etiology and persistence of Type 2 diabetes-related and co morbid AD-related vasculopathies. Additionally, we provide up-to-date perspectives on critical areas of AD research with special reference to common NO-related etiological factors linking Type 2 diabetes to the pathogenesis of AD.
Collapse
Affiliation(s)
- Fuzhou Wang
- Department of Anesthesiology and Critical Care Medicine, Nanjing Maternit and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Xirong Guo
- Institutes of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Xiaofeng Shen
- Department of Anesthesiology and Critical Care Medicine, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Richard M Kream
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| | - Kirk J Mantione
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| | - George B Stefano
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| |
Collapse
|