1
|
Douae B, Samir B, Meriam EA, Fatima-Zahra Y, Youssef A. Mercuric Chloride Aggravates Hyperglycemia-Induced Anxiety and Depressive-Like Behaviors in Type 2 Diabetic Rats: Breakdown of the Antioxidant Defense System. Biol Trace Elem Res 2025:10.1007/s12011-025-04640-y. [PMID: 40279082 DOI: 10.1007/s12011-025-04640-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/22/2025] [Indexed: 04/26/2025]
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is a global health problem frequently associated with biochemical disturbance and also, with a range of mental health disorders including such as anxiety and depression. Whereas, mercury chloride (HgCl₂) is a common environmental pollutant, which is neurotoxic and induces oxidative stress, especially in metabolic disorders like diabetes. The purpose of this investigation is to evaluate the interaction between hyperglycemia-induced oxidative stress and HgCl₂ toxicity and to assess their far-reaching effect spotlighted on biochemical and behavioral disturbances. By analyzing key oxidative stress markers and anxiety- and depression-like behaviors. Experimental design was carried out as follow: control group, HgCl₂-treated group, diabetic group and diabetic HgCl₂-treated group. Type 2 diabetes was induced in a diabetic model via streptozotocin (STZ) and nicotinamide (NA) injections. For the HgCl₂-exposed groups, rats were administered 0.375 mg/kg/day of HgCl₂ orally for 45 consecutive days. Additionally, behavioral tests were performed to examine anxiety- and depression-like behaviors, and hematological, biochemical, oxidative stress markers were assessed to evaluate systemic and neurotoxic effects. The results showed significant increases in fasting blood glucose levels in diabetic and HgCl₂-treated diabetic groups compared to controls (p < 0.001). Body weight significantly decreased in all treated groups (p < 0.05), with the greatest reduction observed in the HgCl₂-treated diabetic group. Behavioral analysis revealed heightened anxiety and depression-like behaviors, particularly in the HgCl₂-treated diabetic group (p < 0.05). Biochemical assessments indicated significant disruptions in lipid profiles and hepatic and renal markers, with pronounced effects in HgCl₂-treated diabetic rats (p < 0.05). Oxidative stress markers demonstrated elevated malondialdehyde and nitric oxide levels in the liver, hippocampus, and prefrontal cortex, paired with diminished antioxidant defences, including catalase and superoxide dismutase activities (p < 0.05). These findings underscore the synergistic role of hyperglycemia and HgCl₂ exposure in amplifying oxidative damage and emotional disturbances, suggesting a critical interplay between metabolic and neurotoxic pathways.
Collapse
Affiliation(s)
- Benloughmari Douae
- Laboratory of Biology and Health, Biology Department, Ibn Tofail University, Faculty of Sciences, Kenitra, Morocco
| | - Bikri Samir
- Laboratory of Biology and Health, Biology Department, Ibn Tofail University, Faculty of Sciences, Kenitra, Morocco.
- Higher School of Technology, Ibn Tofail University, Kenitra, Morocco.
| | - El Aboubi Meriam
- Laboratory of Natural Resources and Sustainable Development, Biology Department, Ibn Tofail University, Faculty of Sciences, Kenitra, Morocco
| | - Yassif Fatima-Zahra
- Laboratory of Biology and Health, Biology Department, Ibn Tofail University, Faculty of Sciences, Kenitra, Morocco
| | - Aboussaleh Youssef
- Laboratory of Biology and Health, Biology Department, Ibn Tofail University, Faculty of Sciences, Kenitra, Morocco
| |
Collapse
|
2
|
Hernández-Munive AK, Fernández-Guasti A. Chronic moderate hyperglycemia does not alter sexual motivation in the female rat. Physiol Behav 2024; 282:114584. [PMID: 38789068 DOI: 10.1016/j.physbeh.2024.114584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
The relationship between diabetes mellitus type 2 (DM2) and sexual desire in women has not been systematically studied, therefore, animal models have been used for this purpose. When streptozotocin (STZ) is administered in the neonatal stage, the rat shows moderate chronic hyperglycemia and glucose intolerance in adulthood, resembling a DM2 model. These females show less alterations of sexual behavior (a slight decreased proceptivity and loss of paced mating) than their counterpart with severe hyperglycemia. However, the motivational components of copulation in female rats in this DM2 model have not been examined. The aim of this study was to evaluate female sexual motivation in a model of DM2 in three behavioral paradigms: the partner preference (PP), the sexual incentive motivation (SIM) and the odor preference test (OPT) tests. Neonatal females (3-4 days) were administered with streptozotocin (STZ, 70 mg/kg, intraperitoneally) or citrate buffer. At week 8, a glucose tolerance test was performed, females with blood glucose levels ≥ 250 mg/dl 60 min after a sucrose load (2 g/kg) were considered for the study. Behavioral tests were conducted at week 12, when the females were in natural proestrus. For PP we registered the time in each compartment and the sexual behavior, while in the SIM test, we calculated the time the females remained in each incentive zone. In these tests a castrated male and a sexually experienced male were used as stimuli. In OPT we evaluated the time the females spent sniffing the sawdust coming from cages housing these stimuli. In the PP and OPT hyperglycemic females behave similarly than controls, i.e., they retain a preference for sexually active males. In the SIM test there was a decrease in the time the hyperglycemic females remain in the vicinity of the sexually expert male. Data are discussed on the bases of the accessibility of the females to the stimuli.
Collapse
Affiliation(s)
- Abigail K Hernández-Munive
- Departamento de Farmacobiología, Centro de investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico; Departamento de Neurociencia Cognitiva, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico.
| | - Alonso Fernández-Guasti
- Departamento de Farmacobiología, Centro de investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico
| |
Collapse
|
3
|
Li S, Yang D, Zhou X, Chen L, Liu L, Lin R, Li X, Liu Y, Qiu H, Cao H, Liu J, Cheng Q. Neurological and metabolic related pathophysiologies and treatment of comorbid diabetes with depression. CNS Neurosci Ther 2024; 30:e14497. [PMID: 37927197 PMCID: PMC11017426 DOI: 10.1111/cns.14497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND The comorbidity between diabetes mellitus and depression was revealed, and diabetes mellitus increased the prevalence of depressive disorder, which ranked 13th in the leading causes of disability-adjusted life-years. Insulin resistance, which is common in diabetes mellitus, has increased the risk of depressive symptoms in both humans and animals. However, the mechanisms behind the comorbidity are multi-factorial and complicated. There is still no causal chain to explain the comorbidity exactly. Moreover, Selective serotonin reuptake inhibitors, insulin and metformin, which are recommended for treating diabetes mellitus-induced depression, were found to be a risk factor in some complications of diabetes. AIMS Given these problems, many researchers made remarkable efforts to analyze diabetes complicating depression from different aspects, including insulin resistance, stress and Hypothalamic-Pituitary-Adrenal axis, neurological system, oxidative stress, and inflammation. Drug therapy, such as Hydrogen Sulfide, Cannabidiol, Ascorbic Acid and Hesperidin, are conducive to alleviating diabetes mellitus and depression. Here, we reviewed the exact pathophysiology underlying the comorbidity between depressive disorder and diabetes mellitus and drug therapy. METHODS The review refers to the available literature in PubMed and Web of Science, searching critical terms related to diabetes mellitus, depression and drug therapy. RESULTS In this review, we found that brain structure and function, neurogenesis, brain-derived neurotrophic factor and glucose and lipid metabolism were involved in the pathophysiology of the comorbidity. Obesity might lead to diabetes mellitus and depression through reduced adiponectin and increased leptin and resistin. In addition, drug therapy displayed in this review could expand the region of potential therapy. CONCLUSIONS The review summarizes the mechanisms underlying the comorbidity. It also overviews drug therapy with anti-diabetic and anti-depressant effects.
Collapse
Affiliation(s)
- Sixin Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Dong Yang
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Xuhui Zhou
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lu Chen
- Department of Gastroenterology, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of GastroenterologyBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lini Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ruoheng Lin
- Department of Psychiatry, National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Xinyu Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ying Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Huiwen Qiu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Hui Cao
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Jian Liu
- Center for Medical Research and Innovation, The First Hospital, Hunan University of Chinese MedicineChangshaHunanChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
4
|
Palazzo E, Marabese I, Boccella S, Belardo C, Pierretti G, Maione S. Affective and Cognitive Impairments in Rodent Models of Diabetes. Curr Neuropharmacol 2024; 22:1327-1343. [PMID: 38279738 PMCID: PMC11092917 DOI: 10.2174/1570159x22666240124164804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 01/28/2024] Open
Abstract
Diabetes and related acute and long-term complications have a profound impact on cognitive, emotional, and social behavior, suggesting that the central nervous system (CNS) is a crucial substrate for diabetic complications. When anxiety, depression, and cognitive deficits occur in diabetic patients, the symptoms and complications related to the disease worsen, contributing to lower quality of life while increasing health care costs and mortality. Experimental models of diabetes in rodents are a fundamental and valuable tool for improving our understanding of the mechanisms underlying the close and reciprocal link between diabetes and CNS alterations, including the development of affective and cognitive disorders. Such models must reproduce the different components of this pathological condition in humans and, therefore, must be associated with affective and cognitive behavioral alterations. Beyond tight glycemic control, there are currently no specific therapies for neuropsychiatric comorbidities associated with diabetes; animal models are, therefore, essential for the development of adequate therapies. To our knowledge, there is currently no review article that summarizes changes in affective and cognitive behavior in the most common models of diabetes in rodents. Therefore, in this review, we have reported the main evidence on the alterations of affective and cognitive behavior in the different models of diabetes in rodents, the main mechanisms underlying these comorbidities, and the applicable therapeutic strategy.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Experimental Medicine, Pharamacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Ida Marabese
- Department of Experimental Medicine, Pharamacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Serena Boccella
- Department of Experimental Medicine, Pharamacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Carmela Belardo
- Department of Experimental Medicine, Pharamacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Gorizio Pierretti
- Department of Plastic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharamacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| |
Collapse
|
5
|
Abbassi R, Pontes MC, Dhibi S, Duarte Filho LAMS, Othmani S, Bouzenna H, Almeida JRGS, Hfaiedh N. Antioxidant properties of date seeds extract (Phoenix dactylifera L.) in alloxan induced damage in rats. BRAZ J BIOL 2023; 83:e274405. [PMID: 38126632 DOI: 10.1590/1519-6984.274405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/05/2023] [Indexed: 12/23/2023] Open
Abstract
The study was conducted to examine the antioxidant activity and evaluate the protective effects of the date seeds powder kentichi against alloxan-induced damage in the liver, kidney, and pancreas in diabetic's rats. Group 1: control group, that did not receive any treatment, Group 2: alloxan was injected intraperitoneally (120 mg/kg body weight) for two days (Diab), Group 3: treated only by date seeds powder added in the diet (300 g/kg) for 6 weeks (DSPK), Group 4: alloxan-diabetic rats treated with date seeds powder (300 g/kg) (DSPK + Diab). Estimations of biochemical parameters in blood were determined. TBARS, SOD, CAT, and GPx activities were determined. A histopathological study was done by immersing pieces of both organs in a fixative solution followed by paraffin hematoxylin-eosin staining. In addition, the antioxidant activities of DSPK were evaluated by DPPH radical scavenging activity, reducing power, and ABTS free radical scavenging. The results revealed that date seeds significantly decreased serum levels of glucose, cholesterol, triglycerides, urea, creatinine, T-protein, ALP, D-bili and T-bili levels. In addition, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities that had been reduced in liver, kidney, and pancreas of the treated group were restored by DSPK treatments and, therefore, the lipid peroxidation level was reduced in the liver, kidney and pancreas tissue compared to the control group. Additionally, the histological structure in these organs was restored after treatment with date seeds powder.
Collapse
Affiliation(s)
- R Abbassi
- University of Gafsa, Faculty of Sciences of Gafsa, Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems - LBBEEO, Gafsa, Tunisia
| | - M C Pontes
- Universidade Federal do Vale do São Francisco, Núcleo de Estudos e Pesquisas de Plantas Medicinais - NEPLAME, Petrolina, PE, Brasil
| | - S Dhibi
- University of Gafsa, Faculty of Sciences of Gafsa, Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems - LBBEEO, Gafsa, Tunisia
| | - L A M S Duarte Filho
- Universidade Federal do Vale do São Francisco, Núcleo de Estudos e Pesquisas de Plantas Medicinais - NEPLAME, Petrolina, PE, Brasil
| | - S Othmani
- University of Gafsa, Faculty of Sciences of Gafsa, Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems - LBBEEO, Gafsa, Tunisia
| | - H Bouzenna
- University of Gafsa, Faculty of Sciences of Gafsa, Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems - LBBEEO, Gafsa, Tunisia
| | - J R G S Almeida
- Universidade Federal do Vale do São Francisco, Núcleo de Estudos e Pesquisas de Plantas Medicinais - NEPLAME, Petrolina, PE, Brasil
| | - N Hfaiedh
- University of Gafsa, Faculty of Sciences of Gafsa, Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems - LBBEEO, Gafsa, Tunisia
| |
Collapse
|
6
|
Ortega MA, Fraile-Martínez Ó, García-Montero C, Alvarez-Mon MA, Lahera G, Monserrat J, Llavero-Valero M, Gutiérrez-Rojas L, Molina R, Rodríguez-Jimenez R, Quintero J, De Mon MA. Biological Role of Nutrients, Food and Dietary Patterns in the Prevention and Clinical Management of Major Depressive Disorder. Nutrients 2022; 14:3099. [PMID: 35956276 PMCID: PMC9370795 DOI: 10.3390/nu14153099] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Major Depressive Disorder (MDD) is a growing disabling condition affecting around 280 million people worldwide. This complex entity is the result of the interplay between biological, psychological, and sociocultural factors, and compelling evidence suggests that MDD can be considered a disease that occurs as a consequence of an evolutionary mismatch and unhealthy lifestyle habits. In this context, diet is one of the core pillars of health, influencing multiple biological processes in the brain and the entire body. It seems that there is a bidirectional relationship between MDD and malnutrition, and depressed individuals often lack certain critical nutrients along with an aberrant dietary pattern. Thus, dietary interventions are one of the most promising tools to explore in the field of MDD, as there are a specific group of nutrients (i.e., omega 3, vitamins, polyphenols, and caffeine), foods (fish, nuts, seeds fruits, vegetables, coffee/tea, and fermented products) or dietary supplements (such as S-adenosylmethionine, acetyl carnitine, creatine, amino acids, etc.), which are being currently studied. Likewise, the entire nutritional context and the dietary pattern seem to be another potential area of study, and some strategies such as the Mediterranean diet have demonstrated some relevant benefits in patients with MDD; although, further efforts are still needed. In the present work, we will explore the state-of-the-art diet in the prevention and clinical support of MDD, focusing on the biological properties of its main nutrients, foods, and dietary patterns and their possible implications for these patients.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28805 Alcalá de Henares, Spain
| | - Óscar Fraile-Martínez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Maria Llavero-Valero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
| | - Luis Gutiérrez-Rojas
- Department of Psychiatry and CTS-549 Research Group, Institute of Neuroscience, University of Granada, 18071 Granada, Spain;
- Psychiatry Service, San Cecilio University Hospital, 18016 Granada, Spain
| | - Rosa Molina
- Department of Psychiatry and Mental, Health San Carlos University Hospital (HCSC), 28034 Madrid, Spain;
- Research Biomedical Fundation of HCSC Hospital, 28034 Madrid, Spain
- Department of Psychology, Comillas University, Cantoblanco, 28015 Madrid, Spain
| | - Roberto Rodríguez-Jimenez
- Department of Legal Medicine, Psychiatry, and Pathology, Complutense University (UCM), 28040 Madrid, Spain;
- Institute for Health Research 12 de Octubre Hospital, (imas12)/CIBERSAM-ISCIII (Biomedical Research Networking Centre in Mental Health), 28041 Madrid, Spain
| | - Javier Quintero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
- Department of Legal Medicine, Psychiatry, and Pathology, Complutense University (UCM), 28040 Madrid, Spain;
| | - Melchor Alvarez De Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
7
|
Bai Y, Xin M, Lin J, Xie J, Lin R, Peng Z, Guo J, Bai W. Banana starch intervention ameliorates diabetes-induced mood disorders via modulation of the gut microbiota-brain axis in diabetic rats. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2071846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Yongliang Bai
- School of Food Science and Engineering, Foshan University, Foshan, People’s Republic of China
- South China Research and Development Center for Food Safety, Foshan University, Foshan, People’s Republic of China
| | - Meiguo Xin
- School of Food Science and Engineering, Foshan University, Foshan, People’s Republic of China
- South China Research and Development Center for Food Safety, Foshan University, Foshan, People’s Republic of China
| | - Junming Lin
- School of Food Science and Engineering, Foshan University, Foshan, People’s Republic of China
| | - Jing Xie
- School of Food Science and Engineering, Foshan University, Foshan, People’s Republic of China
| | - Roumin Lin
- School of Food Science and Engineering, Foshan University, Foshan, People’s Republic of China
| | - Zhenshan Peng
- School of Food Science and Engineering, Foshan University, Foshan, People’s Republic of China
| | - Jingwen Guo
- School of Food Science and Engineering, Foshan University, Foshan, People’s Republic of China
| | - Weidong Bai
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, People’s Republic of China
| |
Collapse
|
8
|
LC/ESI/TOF-MS Characterization, Anxiolytic and Antidepressant-like Effects of Mitragyna speciosa Korth Extract in Diabetic Rats. Molecules 2022; 27:molecules27072208. [PMID: 35408607 PMCID: PMC9000756 DOI: 10.3390/molecules27072208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 01/15/2023] Open
Abstract
In this study, the attenuative effects of the hydro-alcoholic extract from Mitragyna speciosa (MSE) against diabetes-induced anxiety and depression-like behaviors were examined. In addition, UPLC/ESI/TOF-MS analysis was performed to identify the phytochemical nature of MSE. DM was induced using a combination of high fructose/streptozotocin, and the diabetic rats were treated with MSE (50 and 200 mg/kg) for 5 weeks. After treatment, the animals were subjected to a forced swim test, open field test and elevated plus-maze tests. Additionally, proinflammatory cytokines and oxidative stress parameters were evaluated in the brain tissues of the rats. UPLC/ESI/TOF-MS analysis revealed that MSE is abundantly rich in polyphenolic constituents, notably flavonoid and phenolic glycosides. Behavioral tests and biochemical analyses indicated that diabetic rats showed significantly increased anxiety and depressive-like behavioral deficits, brain oxidative stress and pro-inflammatory cytokines levels (IL-1β, IL-6 and TNF-α). Treatment with MSE (50 and 200 mg/kg) significantly attenuated increased blood glucose level, depressive and anxiety-like behaviors in diabetic rats. Additionally, the antioxidant enzymes activities were markedly increased in MSE-treated animals, while TNF-α, IL-1β and IL-6 cytokines were notably suppressed. Taken together, these results suggested that MSE has potentials as antidepressant and anxiolytic-like effects and improves the brain oxido-inflammatory status in diabetic rats.
Collapse
|
9
|
Li F, Xiang H, Gu Y, Ye T, Lu X, Huang C. Innate immune stimulation by monophosphoryl lipid A prevents chronic social defeat stress-induced anxiety-like behaviors in mice. J Neuroinflammation 2022; 19:12. [PMID: 34996472 PMCID: PMC8742352 DOI: 10.1186/s12974-021-02377-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023] Open
Abstract
Background Innate immune pre-stimulation can prevent the development of depression-like behaviors in chronically stressed mice; however, whether the same stimulation prevents the development of anxiety-like behaviors in animals remains unclear. We addressed this issue using monophosphoryl lipid A (MPL), a derivative of lipopolysaccharide (LPS) that lacks undesirable properties of LPS but still keeps immune-enhancing activities. Methods The experimental mice were pre-injected intraperitoneally with MPL before stress exposure. Depression was induced through chronic social defeat stress (CSDS). Behavioral tests were conducted to identify anxiety-like behaviors. Real-time polymerase chain reaction (PCR) and biochemical assays were employed to examine the gene and protein expression levels of pro-inflammatory markers. Results A single MPL injection at the dose of 400 and 800 μg/kg 1 day before stress exposure prevented CSDS-induced anxiety-like behaviors, and a single MPL injection (400 μg/kg) five but not 10 days before stress exposure produced similar effect. The preventive effect of MPL on anxiety-like behaviors was also observed in CSDS mice who received a second MPL injection 10 days after the first MPL injection or a 4 × MPL injection 10 days before stress exposure. MPL pre-injection also prevented the production of pro-inflammatory cytokines in the hippocampus and medial prefrontal cortex in CSDS mice, and inhibiting the central immune response by minocycline pretreatment abrogated the preventive effect of MPL on CSDS-induced anxiety-like behaviors and pro-inflammatory cytokine productions in the brain. Conclusions Pre-stimulation of the innate immune system by MPL can prevent chronic stress-induced anxiety-like behaviors and neuroinflammatory responses in the brain in mice.
Collapse
Affiliation(s)
- Fu Li
- Department of Pharmacy, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No.7 People's Hospital, 288# Yanling East Road, Changzhou, 213000, Jiangsu, China
| | - Haitao Xiang
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou, 215028, Jiangsu, China
| | - Yue Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Jiangsu, 226001, Nantong, China
| | - Ting Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Jiangsu, 226001, Nantong, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Jiangsu, 226001, Nantong, China.
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Jiangsu, 226001, Nantong, China.
| |
Collapse
|