1
|
Ekinci Akdemir FN, Güler MC, Eraslan E, Tanyeli A, Yildirim S. Caftaric acid attenuates kidney and remote organ damage induced by renal ischemia-reperfusion injury. Sci Rep 2024; 14:31385. [PMID: 39732968 PMCID: PMC11682263 DOI: 10.1038/s41598-024-82912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Oxidative stress and inflammation are indispensable components of ischemia-reperfusion (IR) injury. In this study, we investigated the effects of low and high doses of caftaric acid (CA) on reducing kidney and remote organ damage induced by IR. We divided Wistar rats into four groups: sham, IR, low (40 mg/kg body weight (BW)), and high (80 mg/kg BW) CA groups. IR (1 h ischemia, 24 h reperfusion) was applied to all groups, except the sham one. Following the experimental period, we removed kidney and lung tissues to assess biochemical, histopathological, and immunohistochemical parameters. In the IR group, oxidant parameters (malondialdehyde (MDA), myeloperoxidase (MPO), total oxidant status (TOS), oxidative stress index (OSI)) increased, and antioxidant level parameters (superoxide dismutase (SOD) and total antioxidant status (TAS)) diminished. In addition, Microtubule-associated protein light chain 3 (LC3), cyclooxygenase-2 (COX-2), and caspase-3 immunopositivity were severe in the IR group. CA treatment improved the LC3, COX-2, and caspase-3 immunopositivity, lowered the oxidant level, and enhanced the antioxidant capacity. Histopathological findings were consistent with the data. In light of all our results, CA is effective against oxidative stress, autophagy, apoptosis, and inflammation in the renal IR experimental model.
Collapse
Affiliation(s)
- Fazile Nur Ekinci Akdemir
- Department of Nutrition and Dietetics, Faculty of Health Science, Ağrı İbrahim Çeçen University, Ağrı, Turkey
| | - Mustafa Can Güler
- Department of Physiology, Faculty of Medicine, Atatürk University, Erzurum, 25240, Turkey
| | - Ersen Eraslan
- Department of Physiology, Faculty of Medicine, Bandırma OnYedi Eylül University, Balıkesir, Turkey
| | - Ayhan Tanyeli
- Department of Physiology, Faculty of Medicine, Atatürk University, Erzurum, 25240, Turkey.
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| |
Collapse
|
2
|
Świderski G, Gołębiewska E, Kalinowska M, Świsłocka R, Kowalczyk N, Jabłońska-Trypuć A, Lewandowski W. Comparison of Physicochemical, Antioxidant, and Cytotoxic Properties of Caffeic Acid Conjugates. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2575. [PMID: 38893840 PMCID: PMC11174028 DOI: 10.3390/ma17112575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Spectroscopic studies (FT-IR, Raman, 1H, and 13C NMR, UV-VIS) of caffeic acid (CFA) and its conjugates, i.e., caftaric acid (CTA), cichoric acid (CA), and cynarin (CY), were carried out. The antioxidant activity of these compounds was determined by a superoxide dismutase (SOD) activity assay and the hydroxyl radical (HO•) inhibition assay. The cytotoxicity of these compounds was performed on DLD-1 cell lines. The molecules were theoretically modeled using the B3LYP-6-311++G(d,p) method. Aromaticity indexes (HOMA, I6, BAC, Aj), HOMO and LUMO orbital energies and reactivity descriptors, NBO electron charge distribution, EPS electrostatic potential maps, and theoretical IR and NMR spectra were calculated for the optimized model systems. The structural features of these compounds were discussed in terms of their biological activities.
Collapse
Affiliation(s)
- Grzegorz Świderski
- Department of Chemistry, Biology and Biotechnology, Institute of Civil Engineering and Energetics, Faculty of Civil Engineering and Environmental Science, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (M.K.); (R.Ś.); (N.K.); (A.J.-T.); (W.L.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Abedpour N, Javanmard MZ, Karimipour M, Farjah GH. Chlorogenic acid improves functional potential of follicles in mouse whole ovarian tissues in vitro. Mol Biol Rep 2022; 49:10327-10338. [PMID: 36097112 DOI: 10.1007/s11033-022-07793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chlorogenic acid (CGA) is one of the well-known polyphenol compounds possessing several important biological and therapeutic functions. In order to optimize a culture system to achieve complete development of follicles, we focused on the effects of CGA supplementation during in vitro culture (IVC) on follicular development, oxidative stress, antioxidant capacity, developmental gene expression, and functional potential in cultured mouse ovarian tissue. METHODS AND RESULTS The collected whole murine ovaries were randomly divided into four groups: (1) non-cultured group (control 1) with 7-day-old mouse ovaries, (2) non-cultured group (control 2) with 14-day-old mouse ovaries, (3) cultured group (experimental 1) with the culture plates containing only the basic culture medium, (4) cultured group (experimental 2) with the culture plates containing basic culture medium + CGA (50, 100 and 200 µmol/L CGA). Afterward, histological evaluation, biochemical analyses, the expression assessment of genes related to follicular development and apoptosis as well as the analysis of 17-β-estradiol were performed. The results showed that supplementation of ovarian tissue with the basic culture media using CGA (100 µmol/l) significantly increased the survival, developmental and functional potential of follicles in whole mouse ovarian tissues after 7 days of culture. Furthermore, CGA (100 µmol/L) attenuated oxidative damage and enhanced the concentration of antioxidant capacity along with developmental gene expression. CONCLUSION It seems that supplementation of ovarian tissue with culture media using CGA could optimize follicular growth and development in the culture system.
Collapse
Affiliation(s)
- Neda Abedpour
- Department of Anatomical Sciences, school of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Masoumeh Zirak Javanmard
- Department of Anatomical Sciences, school of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Karimipour
- Department of Anatomical Sciences, school of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Gholam Hossein Farjah
- Department of Anatomical Sciences, school of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
4
|
Stagos D, Balabanos D, Savva S, Skaperda Z, Priftis A, Kerasioti E, Mikropoulou EV, Vougogiannopoulou K, Mitakou S, Halabalaki M, Kouretas D. Extracts from the Mediterranean Food Plants Carthamus lanatus, Cichorium intybus, and Cichorium spinosum Enhanced GSH Levels and Increased Nrf2 Expression in Human Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6594101. [PMID: 30581535 PMCID: PMC6276477 DOI: 10.1155/2018/6594101] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023]
Abstract
The Mediterranean diet is considered to prevent several diseases. In the present study, the antioxidant properties of six extracts from Mediterranean plant foods were assessed. The extracts' chemical composition analysis showed that the total polyphenolic content ranged from 56 to 408 GAE mg/g dw of extract. The major polyphenols identified in the extracts were quercetin, luteolin, caftaric acid, caffeoylquinic acid isomers, and cichoric acid. The extracts showed in vitro high scavenging potency against ABTS•+ and O2 •- radicals and reducing power activity. Also, the extracts inhibited peroxyl radical-induced cleavage of DNA plasmids. The three most potent extracts, Cichorium intybus, Carthamus lanatus, and Cichorium spinosum, inhibited OH•-induced mutations in Salmonella typhimurium TA102 cells. Moreover, C. intybus, C. lanatus, and C. spinosum extracts increased the antioxidant molecule glutathione (GSH) by 33.4, 21.5, and 10.5% at 50 μg/ml, respectively, in human endothelial EA.hy926 cells. C. intybus extract was also shown to induce in endothelial cells the transcriptional expression of Nrf2 (the major transcription factor of antioxidant genes), as well as of antioxidant genes GCLC, GSR, NQO1, and HMOX1. In conclusion, the results suggested that extracts from edible plants may prevent diseases associated especially with endothelium damage.
Collapse
Affiliation(s)
- Dimitrios Stagos
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Larissa 41500, Greece
| | - Dimitrios Balabanos
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Larissa 41500, Greece
| | - Salomi Savva
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Larissa 41500, Greece
| | - Zoi Skaperda
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Larissa 41500, Greece
| | - Alexandros Priftis
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Larissa 41500, Greece
| | - Efthalia Kerasioti
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Larissa 41500, Greece
| | - Eleni V. Mikropoulou
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - Konstantina Vougogiannopoulou
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - Sofia Mitakou
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Larissa 41500, Greece
| |
Collapse
|