1
|
Cuberos Paredes E, Goyes D, Mak S, Yardimian R, Ortiz N, McLaren A, Stauss HM. Transcutaneous auricular vagus nerve stimulation inhibits mental stress-induced cortisol release-Potential implications for inflammatory conditions. Physiol Rep 2025; 13:e70251. [PMID: 39936474 PMCID: PMC11815478 DOI: 10.14814/phy2.70251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Elevated glucocorticoid levels with reduced glucocorticoid responsiveness have been reported in chronic inflammatory conditions. Activation of neurons in the nucleus of the solitary tract by transcutaneous auricular vagus nerve stimulation (taVNS) may activate inhibitory pathways projecting to the hypothalamic paraventricular nucleus (PVN), thus inhibiting corticotropin-releasing hormone (CRH) release and improving glucocorticoid dysfunction in chronic inflammatory conditions. Healthy adults (n = 12) participated in experimental (taVNS) and control (sham-taVNS) sessions at least 4 days apart. A 30-min baseline recording was followed by 30 min of taVNS or sham-taVNS and 40 min of recovery. Ten minutes into taVNS or sham-taVNS, a mental arithmetic stress test (MAST) was conducted for 15 min. The MAST increased heart rate, low frequency (LF) heart rate variability (HRV), and the LF to high frequency ratio of HRV, confirming sympathetic activation. Salivary cortisol levels during the MAST were lower during taVNS (49.5 ± 48.0% from baseline; mean ± SD) compared to sham-taVNS (106.0 ± 81.1% from baseline; mean ± SD; p < 0.05). In a psoriasis patient, daily taVNS for 3 months reduced diurnal salivary cortisol levels from 58.2 ± 35.2 (ng/mL)*h (mean ± SD) to 34.9 ± 13.8 (ng/mL)*h (mean ± SD). While it is possible that taVNS inhibited CRH-releasing neurons in the PVN, our study design did not allow to confirm this potential mechanism.
Collapse
Affiliation(s)
- Ely Cuberos Paredes
- Department of Biomedical SciencesBurrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
| | - Domenica Goyes
- Department of Biomedical SciencesBurrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
| | - Sadie Mak
- Department of Biomedical SciencesBurrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
| | - Raffi Yardimian
- Department of Biomedical SciencesBurrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
| | - Nickolas Ortiz
- Department of Biomedical SciencesBurrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
| | - Ayana McLaren
- Department of Biomedical SciencesBurrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
| | - Harald M. Stauss
- Department of Biomedical SciencesBurrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
| |
Collapse
|
2
|
Fan S, Yan L, Zhang J, Sun Y, Qian Y, Wang M, Yu T. Transcutaneous vagus nerve stimulation: a bibliometric study on current research hotspots and status. Front Neurosci 2024; 18:1406135. [PMID: 39221007 PMCID: PMC11363710 DOI: 10.3389/fnins.2024.1406135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Background Transcutaneous Vagal Nerve Stimulation (tVNS) has been used as a promising noninvasive neuromodulation technique for the treatment of various systems.The aim of this study was to analyze the research hotspots and future directions of tVNS in the 21st century by using bibliometric methods. Methods The study object was the literature related to tVNS from the Web of Science database from 2000 to May 2024. In order to measure and analyze the number of literature issuance, institutions, authors, countries, keywords, co-citations, and journals of publication, we used VOSviewer, Citespace, Bibliometrix R-package, and Scimago Graphica software. A narrative review of the current research content of tVNS was conducted to gain a better understanding of the current state of the field. Results A total of 569 papers were included in the study. The results show that from 2000 to 2024, the number of publications shows an increasing trend year by year, involving a total of 326 research institutions. The United States, China, and Germany are the major research centers. The study identified 399 keywords, which roughly formed 11 natural clusters, revealing that the current hotspots of related research are mainly reflected in 3 areas: intervention efficacy on nervous system diseases, mechanism of action of tVNS, and stimulation mode of tVNS. The top 10 most cited references focus on research into the mechanism of action of tVNS. Conclusion The efficacy and safety of tVNS have been confirmed in previous studies, but a standardized tVNS treatment protocol has not yet been developed, and most clinical studies have small sample sizes and lack multicenter and multidisciplinary collaboration. Currently, tVNS is used in the treatment of neurological diseases, psychiatric diseases, cardiovascular diseases, and some autoimmune diseases. It is expected that future research in this field will continue to focus on the application of tVNS in central nervous system diseases and the exploration of related mechanisms, and at the same time, with the rise of non-invasive neuromodulation technology, the application of tVNS in other diseases also has great potential for development.
Collapse
Affiliation(s)
- Shiyu Fan
- The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Medical Research Center of Acupuncture, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Long Yan
- The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Medical Research Center of Acupuncture, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junfeng Zhang
- The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Medical Research Center of Acupuncture, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yujia Sun
- The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Medical Research Center of Acupuncture, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yulin Qian
- The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Medical Research Center of Acupuncture, Tianjin, China
| | - Meng Wang
- The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Medical Research Center of Acupuncture, Tianjin, China
| | - Tao Yu
- The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Medical Research Center of Acupuncture, Tianjin, China
| |
Collapse
|
3
|
Zou N, Zhou Q, Zhang Y, Xin C, Wang Y, Claire-Marie R, Rong P, Gao G, Li S. Transcutaneous auricular vagus nerve stimulation as a novel therapy connecting the central and peripheral systems: a review. Int J Surg 2024; 110:4993-5006. [PMID: 38729100 PMCID: PMC11326027 DOI: 10.1097/js9.0000000000001592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
Currently, clinical practice and scientific research mostly revolve around a single disease or system, but the single disease-oriented diagnostic and therapeutic paradigm needs to be revised. This review describes how transcutaneous auricular vagus nerve stimulation (taVNS), a novel non-invasive neuromodulation approach, connects the central and peripheral systems of the body. Through stimulation of the widely distributed vagus nerve from the head to the abdominal cavity, this therapy can improve and treat central system disorders, peripheral system disorders, and central-peripheral comorbidities caused by autonomic dysfunction. In the past, research on taVNS has focused on the treatment of central system disorders by modulating this brain nerve. As the vagus nerve innervates the heart, lungs, liver, pancreas, gastrointestinal tract, spleen and other peripheral organs, taVNS could have an overall modulatory effect on the region of the body where the vagus nerve is widespread. Based on this physiological basis, the authors summarize the existing evidence of the taVNS ability to regulate cardiac function, adiposity, glucose levels, gastrointestinal function, and immune function, among others, to treat peripheral system diseases, and complex diseases with central and peripheral comorbidities. This review shows the successful examples and research progress of taVNS using peripheral neuromodulation mechanisms from more perspectives, demonstrating the expanded scope and value of taVNS to provide new ideas and approaches for holistic therapy from both central and peripheral perspectives.
Collapse
Affiliation(s)
- Ningyi Zou
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences
| | - Qing Zhou
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences
| | - Yuzhengheng Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences
| | - Chen Xin
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences
| | - Yifei Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences
| | | | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences
| | - Guojian Gao
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shaoyuan Li
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences
| |
Collapse
|
4
|
Maestri R, Pinna GD, Robbi E, Cogliati C, Bartoli A, Gambino G, Rengo G, Montano N, La Rovere MT. Impact of optimized transcutaneous auricular vagus nerve stimulation on cardiac autonomic profile in healthy subjects and heart failure patients. Physiol Meas 2024; 45:075007. [PMID: 39016202 DOI: 10.1088/1361-6579/ad5ef6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Objective.To determine the optimal frequency and site of stimulation for transcutaneous vagus nerve stimulation (tVNS) to induce acute changes in the autonomic profile (heart rate (HR), heart rate variability (HRV)) in healthy subjects (HS) and patients with heart failure (HF).Approach.We designed three single-blind, randomized, cross-over studies: (1) to compare the acute effect of left tVNS at 25 Hz and 10 Hz (n= 29, age 60 ± 7 years), (2) to compare the acute effect of left and right tVNS at the best frequency identified in study 1 (n= 28 age 61 ± 7 years), and (3) to compare the acute effect of the identified optimal stimulation protocol with sham stimulation in HS and HF patients (n= 30, age 59 ± 5 years, andn= 32, age 63 ± 7 years, respectively).Main results.In study 1, left tragus stimulation at 25 Hz was more effective than stimulation at 10 Hz in decreasing HR (-1.0 ± 1.2 bpm,p< 0.001 and -0.5 ± 1.6 bpm, respectively) and inducing vagal effects (significant increase in RMSSD, and HF power). In study 2, the HR reduction was greater with left than right tragus stimulation (-0.9 ± 1.5 bpm,p< 0.01 and -0.3 ± 1.4 bpm, respectively). In study 3 in HS, left tVNS at 25 Hz significantly reduced HR, whereas sham stimulation did not (-1.1 ± 1.2 bpm,p< 0.01 and -0.2 ± 2.9 bpm, respectively). In HF patients, both active and sham stimulation produced negligible effects.Significance.Left tVNS at 25 Hz is effective in acute modulation of cardiovascular autonomic control (HR, HRV) in HS but not in HF patients (NCT05789147).
Collapse
Affiliation(s)
- Roberto Maestri
- Department of Biomedical Engineering, Istituti Clinici Scientifici Maugeri, Montescano Institute-IRCCS, Montescano, Italy
| | - Gian Domenico Pinna
- Department of Biomedical Engineering, Istituti Clinici Scientifici Maugeri, Montescano Institute-IRCCS, Montescano, Italy
| | - Elena Robbi
- Department of Cardiology, Istituti Clinici Scientifici Maugeri, Montescano Institute-IRCCS, Montescano, Italy
| | - Chiara Cogliati
- Department of Biomedical and Clinical Sciences, University of Milan and Department of Internal Medicine, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Arianna Bartoli
- Department of Biomedical and Clinical Sciences, University of Milan and Department of Internal Medicine, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Giuseppina Gambino
- Department of Translational Medical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples 'Federico II', Naples, Italy
- Istituti Clinici Scientifici ICS Maugeri, Telese Terme Institute, -IRCCS, Telese, Italy
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Maria Teresa La Rovere
- Department of Cardiology, Istituti Clinici Scientifici Maugeri, Montescano Institute-IRCCS, Montescano, Italy
| |
Collapse
|
5
|
Kania A, Roufail J, Prokop J, Stauss HM. A framework for the interpretation of heart rate variability applied to transcutaneous auricular vagus nerve stimulation and osteopathic manipulation. Physiol Rep 2024; 12:e15981. [PMID: 38508860 PMCID: PMC10954510 DOI: 10.14814/phy2.15981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Reports on autonomic responses to transcutaneous auricular vagus nerve stimulation (taVNS) and osteopathic manipulative techniques have been equivocal, partly due to inconsistent interpretation of heart rate variability (HRV). We developed a mechanistic framework for the interpretation of HRV based on a model of sinus node automaticity that considers autonomic effects on Phase 3 repolarization and Phase 4 depolarization of the sinoatrial action potential. The model was applied to HRV parameters calculated from ECG recordings (healthy adult humans, both genders) before (30 min), during (15 min), and after (30 min) a time control intervention (rest, n = 23), taVNS (10 Hz, 300 μs, 1-2 mA, cymba concha, left ear, n = 12), or occipitoatlantal decompression (OA-D, n = 14). The experimental protocol was repeated on 3 consecutive days. The model simulation revealed that low frequency (LF) HRV best predicts sympathetic tone when calculated from heart rate time series, while high frequency (HF) HRV best predicts parasympathetic tone when calculated from heart period time series. Applying our model to the HRV responses to taVNS and OA-D, revealed that taVNS increases cardiac parasympathetic tone, while OA-D elicits a mild decrease in cardiac sympathetic tone.
Collapse
Affiliation(s)
- Adrienne Kania
- Department of Clinical MedicineBurrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
| | - Jumana Roufail
- Department of Clinical MedicineBurrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
- Department of Biomedical SciencesBurrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
| | - Joseph Prokop
- Department of Clinical MedicineBurrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
- Department of Biomedical SciencesBurrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
| | - Harald M. Stauss
- Department of Biomedical SciencesBurrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
| |
Collapse
|
6
|
Rao Y, Liu W, Zhu Y, Lin Q, Kuang C, Huang H, Jiao B, Ma L, Lin J. Altered functional brain network patterns in patients with migraine without aura after transcutaneous auricular vagus nerve stimulation. Sci Rep 2023; 13:9604. [PMID: 37311825 DOI: 10.1038/s41598-023-36437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/03/2023] [Indexed: 06/15/2023] Open
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) shows excellent effects on relieving clinical symptoms in migraine patients. Nevertheless, the neurological mechanisms of taVNS for migraineurs remain unclear. In recent years, voxel-wise degree centrality (DC) and functional connectivity (FC) methods were extensively utilized for exploring alterations in patterns of FC in the resting-state brain. In the present study, thirty-five migraine patients without aura and thirty-eight healthy controls (HCs) were recruited for magnetic resonance imaging scans. Firstly, this study used voxel-wise DC analysis to explore brain regions where abnormalities were present in migraine patients. Secondly, for elucidating neurological mechanisms underlying taVNS in migraine, seed-based resting-state functional connectivity analysis was employed to the taVNS treatment group. Finally, correlation analysis was performed to explore the relationship between alterations in neurological mechanisms and clinical symptoms. Our findings indicated that migraineurs have lower DC values in the inferior temporal gyrus (ITG) and paracentral lobule than in healthy controls (HCs). In addition, migraineurs have higher DC values in the cerebellar lobule VIII and the fusiform gyrus than HCs. Moreover, after taVNS treatment (post-taVNS), patients displayed increased FC between the ITG with the inferior parietal lobule (IPL), orbitofrontal gyrus, angular gyrus, and posterior cingulate gyrus than before taVNS treatment (pre-taVNS). Besides, the post-taVNS patients showed decreased FC between the cerebellar lobule VIII with the supplementary motor area and postcentral gyrus compared with the pre-taVNS patients. The changed FC of ITG-IPL was significantly related to changes in headache intensity. Our study suggested that migraine patients without aura have altered brain connectivity patterns in several hub regions involving multisensory integration, pain perception, and cognitive function. More importantly, taVNS modulated the default mode network and the vestibular cortical network related to the dysfunctions in migraineurs. This paper provides a new perspective on the potential neurological mechanisms and therapeutic targets of taVNS for treating migraine.
Collapse
Affiliation(s)
- Yuyang Rao
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Wenting Liu
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Yunpeng Zhu
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Qiwen Lin
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Changyi Kuang
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Huiyuan Huang
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Bingqing Jiao
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Lijun Ma
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China.
| | - Jiabao Lin
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China.
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
7
|
Soltani D, Azizi B, Sima S, Tavakoli K, Hosseini Mohammadi NS, Vahabie AH, Akbarzadeh-Sherbaf K, Vasheghani-Farahani A. A systematic review of the effects of transcutaneous auricular vagus nerve stimulation on baroreflex sensitivity and heart rate variability in healthy subjects. Clin Auton Res 2023; 33:165-189. [PMID: 37119426 DOI: 10.1007/s10286-023-00938-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/27/2023] [Indexed: 05/01/2023]
Abstract
PURPOSE This systematic review aimed to evaluate the effect of transcutaneous auricular vagus nerve stimulation on heart rate variability and baroreflex sensitivity in healthy populations. METHOD PubMed, Scopus, the Cochrane Library, Embase, and Web of Science were systematically searched for controlled trials that examined the effects of transcutaneous auricular vagus nerve stimulation on heart rate variability parameters and baroreflex sensitivity in apparently healthy individuals. Two independent researchers screened the search results, extracted the data, and evaluated the quality of the included studies. RESULTS From 2458 screened studies, 21 were included. Compared with baseline measures or the comparison group, significant changes in the standard deviation of NN intervals, the root mean square of successive RR intervals, the proportion of consecutive RR intervals that differ by more than 50 ms, high-frequency power, low-frequency to high-frequency ratio, and low-frequency power were found in 86%, 75%, 69%, 47%, 36%, and 25% of the studies evaluating the effects of transcutaneous auricular vagus nerve stimulation on these indices, respectively. Baroreflex sensitivity was evaluated in six studies, of which a significant change was detected in only one. Some studies have shown that the worse the basic autonomic function, the better the response to transcutaneous auricular vagus nerve stimulation. CONCLUSION The results were mixed, which may be mainly attributable to the heterogeneity of the study designs and stimulation delivery dosages. Thus, future studies with comparable designs are required to determine the optimal stimulation parameters and clarify the significance of autonomic indices as a reliable marker of neuromodulation responsiveness.
Collapse
Affiliation(s)
- Danesh Soltani
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bayan Azizi
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepehr Sima
- Department of Psychology, University of Tehran, Tehran, Iran
| | - Kiarash Tavakoli
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Sadat Hosseini Mohammadi
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Abdol-Hossein Vahabie
- Control and Intelligent Processing Center of Excellence (CIPCE), Cognitive Systems Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Department of Psychology, Faculty of Psychology and Education, University of Tehran, Tehran, Iran
| | - Kaveh Akbarzadeh-Sherbaf
- Department of Computer Engineering and Information Technology, Imam Reza International University, Mashhad, Iran
| | - Ali Vasheghani-Farahani
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Jara Silva CE, Joseph AM, Khatib M, Knafo J, Karas M, Krupa K, Rivera B, Macia A, Madhu B, McMillan M, Burtch J, Quinonez J, Albert T, Khanna D. Osteopathic Manipulative Treatment and the Management of Headaches: A Scoping Review. Cureus 2022; 14:e27830. [PMID: 36110479 PMCID: PMC9462953 DOI: 10.7759/cureus.27830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 02/05/2023] Open
Abstract
Headaches have been studied and treated since nearly 7,000 BC because of their significant global impact. Current headache treatment modalities are various and have a wide variety of targets, but medications are the most common. Since conventional medical treatments have several side effects, alternative remedies such as osteopathic manipulative treatment (OMT) should be considered. OMT can assist in the management of various health conditions, such as low back pain, neck pain, and headaches. The purpose of this scoping review is to evaluate recent findings regarding the efficacy of OMT modalities in the management of headaches such as tension-type headaches (TTH) and migraines. This study was designed as a scoping review to gather evidence on the efficacy of OMT modalities in the management of headaches. Following PRISMA guidelines, four databases were used to search for articles published between 2010 and 2022 that reported the use of OMT and manual therapy for TTH and migraines. Databases used include Embase, PubMed, Medline, and Web of Science. The following keywords were used: treatment, therapy, Headache, migraine, craniosacral, muscle energy, myofascial release, trigger point, osteopathic, and manipulation. The initial search yielded 473 unique articles after removing duplicates. After screening based on the inclusion and exclusion criteria, and after further analysis, 15 articles were selected. Data reports of OMT and manual therapy efficacy and/or effectiveness in treating TTH and migraine were analyzed. Articles included were randomized control studies (13 of 15, 86.6%), one pilot study (one of 15, 6.7%), and one case series (one of 15, 6.7%), which were divided into TTH (nine of 15, 60%) and Migraine Headaches (six of 15, 40%). All articles reported significant headache improvement in at least one measurement. Of all treatments analyzed, single technique interventions (seven of 15, 47%) and multiple technique interventions (eight of 15, 53%) were identified. Among the techniques used, Myofascial Release was the most common (nine of 15, 60%). The articles presented provide evidence of the significant benefits of manual therapy. Because of the limitations of traditional medicine, OMT can be used either as an alternative or adjuvant therapy for headaches. Evidence suggests the positive impact it can provide on headache management, but the number of randomized control trials and population samples should be increased to support its recommendation. This demonstrates how different osteopathic techniques can provide therapeutic effects on TTH, MH, and potentially other types of headaches. A preference for myofascial release was observed, which can be due to the fast relief from the physiologic effect on tissue movement. This review study demonstrates the benefits OMT has on decreasing headache frequency, intensity, and duration in TTH and migraines. OMT has shown to be beneficial, especially for patients seeking alternative non-pharmaceutical and non-invasive treatments. Further studies are needed to evaluate the effects of different OMT techniques, and different combinations of treatments, on other types of headaches.
Collapse
Affiliation(s)
- Cesar E Jara Silva
- Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA
| | - Andrew M Joseph
- Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA
| | - Mohammed Khatib
- Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, USA
| | - Jenna Knafo
- Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, USA
| | - Monica Karas
- Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA
| | - Kristina Krupa
- Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA
| | - Benjamin Rivera
- Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, USA
| | - Alexander Macia
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Bhargavi Madhu
- Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, USA
| | - Mary McMillan
- Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, USA
| | - Jason Burtch
- Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA
| | - Jonathan Quinonez
- Osteopathic Neuromusculoskeletal Medicine, Larkin Community Hospital, Miami, USA
| | - Trevine Albert
- Interventional Pain, Larkin Community Hospital, Miami, USA
| | - Deepesh Khanna
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| |
Collapse
|
9
|
Kozorosky EM, Lee CH, Lee JG, Nunez Martinez V, Padayachee LE, Stauss HM. Transcutaneous auricular vagus nerve stimulation augments postprandial inhibition of ghrelin. Physiol Rep 2022; 10:e15253. [PMID: 35441808 PMCID: PMC9020171 DOI: 10.14814/phy2.15253] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 05/15/2023] Open
Abstract
Vagus nerve stimulation (VNS) facilitates weight loss in animals and patients treated with VNS for depression or epilepsy. Likewise, chronic transcutaneous auricular VNS (taVNS) reduces weight gain and improves glucose tolerance in Zucker diabetic fatty rats. If these metabolic effects of taVNS observed in rats translate to humans is unknown. Therefore, the hypothesis of this study was that acute application of taVNS affects glucotropic and orexigenic hormones which could potentially facilitate weight loss and improve glucose tolerance if taVNS were applied chronically. In two single-blinded randomized cross-over protocols, blood glucose levels, plasma concentrations of insulin, C-peptide, glucagon, leptin, and ghrelin, together with heart rate variability and baroreceptor-heart rate reflex sensitivity were determined before and after taVNS (left ear, 10 Hz, 300 µs, 2.0-2.5 mA, 30 min) or sham-taVNS (electrode attached to ear with the stimulator turned off). In a first protocol, subjects (n = 16) were fasted throughout the protocol and in a second protocol, subjects (n = 10) received a high-calorie beverage (220 kCal) after the first blood sample, just before initiation of taVNS or sham-taVNS. No significant effects of taVNS on heart rate variability and baroreceptor-heart rate reflex sensitivity and only minor effects on glucotropic hormones were observed. However, in the second protocol taVNS significantly lowered postprandial plasma ghrelin levels (taVNS: -115.5 ± 28.3 pg/ml vs. sham-taVNS: -51.2 ± 30.6 pg/ml, p < 0.05). This finding provides a rationale for follow-up studies testing the hypothesis that chronic application of taVNS may reduce food intake through inhibition of ghrelin and, therefore, may indirectly improve glucose tolerance through weight loss.
Collapse
Affiliation(s)
| | - Cristina H. Lee
- Burrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
| | - Jessica G. Lee
- Burrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
| | | | | | | |
Collapse
|