1
|
Bilgiç A, Cura M, Kılınç İ, Akça ÖF. Low Levels of Serum Ghrelin and Nesfatin-1 Are Associated With Anxiety Disorders in Children. Soa Chongsonyon Chongsin Uihak 2025; 36:69-77. [PMID: 40203141 PMCID: PMC11969048 DOI: 10.5765/jkacap.250001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/05/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025] Open
Abstract
Objectives Because appetite-regulating hormones are implicated in neuronal survival, growth, and differentiation, they have been suggested to play a role in anxiety disorders. To date, few studies have focused on the association between these hormones and anxiety disorders in children. This study investigated the potential differences in leptin, ghrelin, and nesfatin-1 serum levels in drug-naïve children with anxiety disorders, including social anxiety disorder, separation anxiety disorder, and generalized anxiety disorder, and in healthy controls. Methods This study included 45 children (14 boys and 31 girls) with anxiety disorders and 35 healthy controls (13 boys and 22 girls) aged 8-18 years. The severity of anxiety disorders and additional symptoms were evaluated using the Revised Child Anxiety and Depression Scales-Child Version. Enzyme-linked immunosorbent assay (ELISA) was used to evaluate leptin, ghrelin, and nesfatin-1 serum levels. Results Leptin levels were significantly higher in children with anxiety disorders than in the control group, and ghrelin and nesfatin-1 levels were significantly lower in children with anxiety disorders than in the control group for girls and for the entire sample. However, only low nesfatin-1 levels were significantly associated with anxiety disorders in boys. In the entire sample, potential confounders such as age, sex, body mass index, and the severity of depressive symptoms were controlled for, and the results were the same for ghrelin and nesfatin-1 levels. However, the difference in leptin levels between groups was not significant. Conclusion These findings suggest that dysregulation of ghrelin and nesfatin-1 concentrations may be related to the etiopathogenesis of childhood anxiety disorders.
Collapse
Affiliation(s)
- Ayhan Bilgiç
- Department of Child and Adolescent Psychiatry, Faculty of
Medicine, Izmir University of Economics, Izmir,
Türkiye
| | - Merve Cura
- Department of Child and Adolescent Psychiatry, Etlik City
Hospital, Ankara, Türkiye
| | - İbrahim Kılınç
- Department of Biochemistry, Necmettin Erbakan University
Faculty of Medicine, Konya, Türkiye
| | - Ömer Faruk Akça
- Department of Child and Adolescent Psychiatry, Necmettin
Erbakan University Faculty of Medicine, Konya, Türkiye
| |
Collapse
|
2
|
Mingardi J, Meanti R, Paoli C, Cifani C, Torsello A, Popoli M, Musazzi L. Ghrelin, Neuroinflammation, Oxidative Stress, and Mood Disorders: What Are the Connections? Curr Neuropharmacol 2025; 23:172-186. [PMID: 39041263 PMCID: PMC11793048 DOI: 10.2174/1570159x22999240722095039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 07/24/2024] Open
Abstract
Ghrelin is a gut peptide hormone associated with feeding behavior and energy homeostasis. Acylated ghrelin binds to the growth hormone secretagogue receptor 1a subtype (GHS-R1a) in the hippocampus, leading to GH release from the anterior pituitary. However, in recent years, ghrelin and its receptor have also been implicated in other processes, including the regulation of cardiomyocyte function, muscle trophism, and bone metabolism. Moreover, GHS-R1a is distributed throughout the brain and is expressed in brain areas that regulate the stress response and emotional behavior. Consistently, a growing body of evidence supports the role of ghrelin in regulating stress response and mood. Stress has consistently been shown to increase ghrelin levels, and despite some inconsistencies, both human and rodent studies suggested antidepressant effects of ghrelin. Nevertheless, the precise mechanism by which ghrelin influences stress response and mood remains largely unknown. Intriguingly, ghrelin and GHS-R1a were consistently reported to exert anti-inflammatory, antioxidant, and neurotrophic effects both in vivo and in vitro, although this has never been directly assessed in relation to psychopathology. In the present review we will discuss available literature linking ghrelin with the stress response and depressive-like behavior in animal models as well as evidence describing the interplay between ghrelin and neuroinflammation/oxidative stress. Although further studies are required to understand the mechanisms involved in the action of ghrelin on mood, we hypothesize that the antiinflammatory and anti-oxidative properties of ghrelin may give a key contribution.
Collapse
Affiliation(s)
- Jessica Mingardi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Ramona Meanti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Caterina Paoli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Maurizio Popoli
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milano, Italy
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
3
|
Örüm D, Korkmaz S, İlhan N, Örüm MH, Atmaca M. Leptin, Nesfatin-1, Orexin-A, and Total Ghrelin Levels in Drug-Naive Panic Disorder. Psychiatry Investig 2024; 21:142-150. [PMID: 38433413 PMCID: PMC10910167 DOI: 10.30773/pi.2023.0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/06/2023] [Accepted: 11/09/2023] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVE This study aimed to examine the changes in serum nesfatin-1, leptin, orexin-A, and total ghrelin levels of patients diagnosed with drug-naive panic disorder (PD) before and after six weeks of the treatment and to compare the findings with the healthy subjects. METHODS The neuropeptides were measured in venous blood samples taken from 32 patients and 32 healthy subjects. The blood samples of the patients who used paroxetine 20 mg/day plus alprazolam 0.5 mg/day were retaken again after six weeks. Measurements were performed with the Enzyme-Linked Immunosorbent Assay (ELISA) method. RESULTS Serum nesfatin-1, leptin, orexin-A and total ghrelin levels of the patient group were found to be significantly lower than the control group (p<0.001, p<0.001, p<0.001, and p<0.001, respectively). When the serum nesfatin-1, leptin, orexin-A and total ghrelin levels of the patient group were compared before and after treatment, significant differences were found in terms of orexin-A and total ghrelin levels (p=0.046, p<0.001, respectively). However, no significant differences were found in terms of nesfatin-1and leptin levels (p=0.205, p=0.988, respectively). CONCLUSION This study reports that PD, like other anxiety disorders, may affect serum nesfatin-1, leptin, orexin-A, and total ghrelin levels, and there may be a relationship between PD treatment and the levels of these neuropeptides. The variability of this relationship among the neuropeptides examined indicates that various factors other than treatment play a role in this process.
Collapse
Affiliation(s)
- Dilek Örüm
- Psychiatry, Elazığ Fethi Sekin City Hospital, Elazığ, Turkey
| | - Sevda Korkmaz
- Department of Psychiatry, Firat University, Faculty of Medicine, Elazığ, Turkey
| | - Nevin İlhan
- Department of Medical Biochemistry, Firat University, Faculty of Medicine, Elazığ, Turkey
| | - Mehmet Hamdi Örüm
- Psychiatry, Elazığ Mental Health and Diseases Hospital, Elazığ, Turkey
| | - Murad Atmaca
- Department of Psychiatry, Firat University, Faculty of Medicine, Elazığ, Turkey
| |
Collapse
|
4
|
Daniels TE, Mathis KJ, Gobin AP, Lewis-de Los Angeles WW, Smith EM, Chanthrakumar P, de la Monte S, Tyrka AR. Associations of early life stress with leptin and ghrelin in healthy young adults. Psychoneuroendocrinology 2023; 149:106007. [PMID: 36577337 PMCID: PMC9931677 DOI: 10.1016/j.psyneuen.2022.106007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Childhood adversity is a major risk factor for cardiometabolic health problems. Stress-related changes in diet suggest a role for endocrine factors that influence dietary intake, such as leptin and ghrelin. These hormones influence metabolism and may contribute to the relationship of early adversity, mental, and cardiometabolic health. This study examined levels of leptin and ghrelin in a sample of young adults with and without early life stress (ELS). METHODS Young adults ages 18-40 (N = 200; 68.5% female) were recruited from the community. Participants with ELS (N = 118) had childhood maltreatment, and a subset, n = 92 (78.0%) also had parental loss, and n = 65 (55.1%) also had a current psychiatric disorder. Control participants (N = 82) had no maltreatment, parental loss, or psychiatric disorders. Standardized interviews and self-reports assessed demographics, adversity, medical/psychiatric history, and health behaviors. Exclusion criteria included medical conditions and current medications other than hormonal contraceptives. Body Mass Index (BMI) and other anthropometrics were measured, and fasting plasma was assayed for total ghrelin and leptin with the Bio-Plex Pro Human Diabetes Panel. RESULTS While ELS was significantly associated with greater leptin (r = .16, p = .025), a finding which held when adjusted for age and sex (F(3196)= 28.32, p = .011), this relationship was abolished when accounting for BMI (p = .44). Participants with ELS also had significantly lower total ghrelin (r = .21, p = .004), which held adjusting for age and sex (p = .002) and was attenuated (p = .045) when the model included BMI (F=46.82, p < .001). Current psychiatric disorder was also a significant predictor of greater leptin (r = .28, p < .001) and lower ghrelin (r = .29, p = .003). In the model with ELS and covariates, psychiatric disorder remained significant (F=7.26, p = .008) and ELS was no longer significant (p = .87). Associations with severity and recent perceived stress were also examined. CONCLUSION The relationship of ELS and leptin was no longer significant when accounting for BMI, suggesting potential avenues for intervention. Ghrelin findings persisted after correction for BMI, which may be secondary to physiological differences in the regulation of these hormones (leptin is produced by adipocytes, whereas ghrelin is produced primarily in the GI tract). Lastly, these findings suggest that psychiatric functioning may be a key component contributing to the relationship of lower total ghrelin and childhood adversity.
Collapse
Affiliation(s)
- Teresa E Daniels
- Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA; Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA.
| | | | - Asi Polly Gobin
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| | - William W Lewis-de Los Angeles
- Department of Pediatrics, Hasbro Children's Hospital and Bradley Hospital, RI, USA; Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Eric M Smith
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | | | - Suzanne de la Monte
- Warren Alpert Medical School, Brown University, Providence, RI, USA; Departments of Medicine, Neurology, and Pathology and Laboratory Medicine, Rhode Island Hospital, Women and Infants Hospital of Rhode Island, and Providence VA Medical Center, Providence, RI, USA
| | - Audrey R Tyrka
- Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA; Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| |
Collapse
|
5
|
Fritz EM, Pierre A, De Bundel D, Singewald N. Ghrelin receptor agonist MK0677 and overnight fasting do not rescue deficient fear extinction in 129S1/SvImJ mice. Front Psychiatry 2023; 14:1094948. [PMID: 36846243 PMCID: PMC9947350 DOI: 10.3389/fpsyt.2023.1094948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/03/2023] [Indexed: 02/11/2023] Open
Abstract
The hunger hormone ghrelin has been implicated in the modulation of anxiety- and fear-related behaviors in rodents and humans, while its dysregulation may be associated with psychiatric illness. Along these lines, the ghrelin system has been suggested as a potential target to facilitate fear extinction, which is the main mechanism underlying cognitive behavioral therapy. So far, this hypothesis has not been tested in individuals that have difficulties to extinguish fear. Thus, we investigated pharmacological (ghrelin receptor agonist MK0677) and non-pharmacological (overnight fasting) strategies to target the ghrelin system in the 129S1/SvImJ (S1) mouse strain, which models the endophenotype of impaired fear extinction that has been associated with treatment resistance in anxiety and PTSD patients. MK0677 induced food intake and overnight fasting increased plasma ghrelin levels in S1 mice, suggesting that the ghrelin system is responsive in the S1 strain. However, neither systemic administration of MK0677 nor overnight fasting had an effect on fear extinction in S1 mice. Similarly, our groups previously reported that both interventions did not attenuate fear in extinction-competent C57BL/6J mice. In summary, our findings are in contrast to several studies reporting beneficial effects of GHSR agonism and overnight fasting on fear- and anxiety-related behaviors in rodents. Rather, our data agree with accumulating evidence of divergent behavioral effects of ghrelin system activation and underscore the hypothesis that potential benefits of targeting the ghrelin system in fear extinction may be dependent on factors (e.g., previous stress exposure) that are not yet fully understood.
Collapse
Affiliation(s)
- Eva Maria Fritz
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Innsbruck, Austria
| | - Anouk Pierre
- Department of Pharmaceutical Sciences, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Dimitri De Bundel
- Department of Pharmaceutical Sciences, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Tasci G, Kaya S, Kalayci M, Atmaca M. Increased ghrelin and decreased leptin levels in patients with antisocial personality disorder. J Affect Disord 2022; 317:22-28. [PMID: 36028010 DOI: 10.1016/j.jad.2022.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/25/2022] [Accepted: 08/20/2022] [Indexed: 10/31/2022]
Abstract
OBJECTIVE The study aimed to compare acyl ghrelin (AG), des-acyl ghrelin (DAG), and leptin levels considered to be used as biological markers in the etiopathogenesis of antisocial personality disorder (ASPD) with healthy controls, and to investigate the relationship between these hormones and aggression and impulsivity. METHOD The study included 45 patients with ASPD and 61 healthy people in the control group. Sociodemographic data form, Beck Depression Inventory (BDI), Beck Anxiety Inventory (BAI), Barratt Impulsiveness Scale (BIS-11), and Buss-Durkee Aggression Scale (BDAS) were applied to all participants. Fasting venous blood samples were taken from all participants at the same time of the day and the height and weight of the participants were measured. RESULTS It was found that the mean serum AG and DAG levels were significantly higher than that of healthy controls whereas leptin hormone levels were significantly lower in patients compared to healthy controls. BDI, BAI, BIS-11, and BDAS scores of the patients were significantly higher compared to healthy controls. There was a positive correlation between AG and DAG hormone levels and impulsivity and aggression. DISCUSSION The present study is the first in the literature to examine AG, DAG, and leptin hormone levels of patients diagnosed with ASPD. According to the results of the study, it is believed that changes in serum leptin and ghrelin levels will bring a new perspective in terms of understanding the pathophysiological mechanism of ASPD. Further studies are required to explain the definitive roles of these hormones in ASPD.
Collapse
Affiliation(s)
- Gulay Tasci
- Elazig Fethi Sekin City Hospital, Elazig, Turkey.
| | - Suheda Kaya
- Elazig Mental Health Hospital, Elazig, Turkey
| | | | - Murad Atmaca
- Firat University School of Medicine Department of Psychiatry, Elazig, Turkey
| |
Collapse
|
7
|
Wittekind DA, Kratzsch J, Mergl R, Riedel-Heller S, Witte AV, Villringer A, Kluge M. Serum ghrelin is positively associated with physiological anxiety but negatively associated with pathological anxiety in humans: Data from a large community-based study. Psychoneuroendocrinology 2022; 140:105728. [PMID: 35305404 DOI: 10.1016/j.psyneuen.2022.105728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/05/2022] [Accepted: 03/11/2022] [Indexed: 12/19/2022]
Abstract
The orexigenic hormone ghrelin is being increasingly recognized as a stress hormone being involved in anxiety regulation. In animals, ghrelin effects on, and responses to acute stress differed from those in chronic stress, an animal model for anxiety and depression. In humans, elevated ghrelin levels were reported in pathological anxiety (e.g. panic disorder). However, no reports exist on physiological anxiety in mentally healthy subjects. In addition, reports on generalized anxiety symptoms, both in mentally healthy subjects (e.g. worrying) or in adult patients, are lacking. Total serum ghrelin was determined in 1666 subjects of a population-based cross-sectional study ('LIFE'). The 7-item Generalized Anxiety Disorder Scale (GAD-7), detecting also other anxiety disorders, was administered. For multiple linear regression analyses, 1091 subjects were finally included. Serum ghrelin and GAD-7 scores were positively but not significantly associated in the total group (ß=0.00025, standardized β = 0.039, 95%CI: -0.00006;0.0006;p = 0.144), in subjects with no more than mild anxiety, there was a significant positive association (GAD-7 ≤9: n = 1061, 97.25%, β = 0.00032; standardized β = 0.060; 95%CI: 0.000023;0.00062;p = 0.036). In contrast, there was a negative association in subjects with anxiety symptoms above the GAD-7 cut-off (GAD-7 ≥10: n = 30, 2.75%, ß=-0.003, standardized β = -0.462; 95% CI:-0.006;0.0001;p = 0.045). Ghrelin levels were only numerically (p = 0.23) higher in subjects with clinically relevant anxiety symptoms (963.5 ± 399.6 pg/ml; mean±SD) than in those without (901.0 ± 416.4 pg/ml). In conclusion, the positive association between ghrelin and no more than mild anxiety is an initial indication for a role for ghrelin in the regulation of physiological anxiety in humans. This association and the opposed association in pathological anxiety resemble findings in animals showing diverging ghrelin effects in acute and chronic stress.
Collapse
Affiliation(s)
| | - Jürgen Kratzsch
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Roland Mergl
- Institute of Psychology, Universität der Bundeswehr München, Neubiberg, Germany
| | - Steffi Riedel-Heller
- Faculty of Medicine, Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany
| | - A Veronica Witte
- Clinic of Cognitive Neurology, University of Leipzig, and Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Clinic of Cognitive Neurology, University of Leipzig, and Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
| | - Michael Kluge
- Department of Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
8
|
Türkoğlu M, Baran A, Sulukan E, Ghosigharehagaji A, Yildirim S, Ceyhun HA, Bolat İ, Arslan M, Ceyhun SB. The potential effect mechanism of high-fat and high-carbohydrate diet-induced obesity on anxiety and offspring of zebrafish. Eat Weight Disord 2022; 27:163-177. [PMID: 33710522 DOI: 10.1007/s40519-021-01140-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/29/2021] [Indexed: 01/12/2023] Open
Abstract
Anxiety and obesity are two current phenomena. They are among the important public health problems with increasing prevalence worldwide. Although it is claimed that there are strong relations between them, the mechanism of this relationship has not been fully clarified yet. On the other hand, the effect of this relationship on the offspring has been another research subject. In this study, obese zebrafish were obtained by feeding two different diets, one containing high amount of lipid (HF) and the other containing high amount of carbohydrate (HK), and their anxiety levels were evaluated. To establish a relationship between these two phenomena, in addition to histopathological and immunohistochemical analysis in the brain tissues of fish, the transcription levels of some genes related to lipid and carbohydrate metabolisms were determined. In addition, offspring were taken from obese zebrafish and studied to examine the effect of parental obesity on offspring. As a result, it was observed that the HC diet, causing more weight increase than the HF diet, showed an anxiolytic while the HF diet an anxiogenic effect. It was suggested that the probable cause of this situation may be the regulatory effect on the appetite-related genes depending on the upregulation severity of the PPAR gene family based on the diet content. In addition, it was also suggested that it may have contributed to this process in neuron degenerations caused by oxidative stress. Regarding effects on offspring, it can be concluded that HF diet-induced obesity has more negative effects on the next generation than the HC diet.Level of evidenceNo Level of evidence: animal study.
Collapse
Affiliation(s)
- Medine Türkoğlu
- Department of Nanoscience, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Alper Baran
- Department of Food Quality Control and Analysis, Erzurum Vocational School, Atatürk University, Erzurum, Turkey
| | - Ekrem Sulukan
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, 25240, Erzurum, Turkey
| | - Atena Ghosigharehagaji
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Hacer Akgül Ceyhun
- Department of Psychiatry, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - İsmail Bolat
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Murat Arslan
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, 25240, Erzurum, Turkey
| | - Saltuk Buğrahan Ceyhun
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey.
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, 25240, Erzurum, Turkey.
| |
Collapse
|
9
|
Expression of ghrelin or growth hormone secretagogue receptor in the brain of postpartum stress mice. Neuroreport 2021; 32:678-685. [PMID: 33913930 DOI: 10.1097/wnr.0000000000001633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Postpartum depression is one of the most common mental diseases that occur in women after childbirth; this disorder is extremely painful for women and represents a major burden on the society. Therefore, we designed this study to explore the possible material basis of the disease, and provide potential novel antidepressants therapy using a mouse model. We established a postpartum immobilization stress model. Maternal body weight changes and food intake were recorded for half a month after delivery, and levels of ghrelin and its receptor, growth hormone secretagogue receptor (GHSR) were measured. The mice in the immobilization stress group showed stress activity as well as low body weight and low feeding status. Ghrelin expression was elevated in blood whereas ghrelin or GHSR expression decreased in the hippocampus and prefrontal cortex of the immobilization stress mice, and the number of ghrelin-active and GHSR cells reduced.
Collapse
|
10
|
Browning BD, Schwandt ML, Farokhnia M, Deschaine SL, Hodgkinson CA, Leggio L. Leptin Gene and Leptin Receptor Gene Polymorphisms in Alcohol Use Disorder: Findings Related to Psychopathology. Front Psychiatry 2021; 12:723059. [PMID: 34421692 PMCID: PMC8377199 DOI: 10.3389/fpsyt.2021.723059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Comorbidity between alcohol use disorder (AUD) and other addictive and psychiatric disorders is highly prevalent and disabling; however, the underlying biological correlates are not fully understood. Leptin is a peptide hormone known for its role in energy homeostasis and food intake. Furthermore, leptin plays a key role in the activity of the hypothalamic-pituitary-adrenal (HPA) axis and of several neurotransmitter systems that regulate emotionality and behavior. However, human studies that have investigated circulating leptin levels in relation to AUD and affective disorders, such as anxiety and depression, are conflicting. Genetic-based analyses of the leptin gene (LEP) and leptin receptor gene (LEPR) have the potential of providing more insight into the potential role of the leptin system in AUD and comorbid psychopathology. The aim of the current study was to investigate whether genotypic variations at LEP and LEPR are associated with measures of alcohol use, nicotine use, anxiety, and depression, all of which represent common comorbidities with AUD. Haplotype association analyses were performed, using data from participants enrolled in screening and natural history protocols at the National Institute on Alcohol Abuse and Alcoholism (NIAAA). Analyses were performed separately in European Americans and African Americans due to the variation in haplotype diversity for most genes between these groups. In the European American group, one LEP haplotype (EB2H4) was associated with lower odds of having a current AUD diagnosis, two LEPR haplotypes (EB7H3, EB8H3) were associated with lower cigarette pack years and two LEPR haplotypes (EB7H2, EB8H2) were associated with higher State-Trait Anxiety Inventory (STAI-T) scores. In the African American group, one LEP haplotype (AB2H8) was associated with higher cigarette pack years and one LEP haplotype (AB3H2) was associated with lower Fagerström Test for Nicotine Dependence (FTND) scores. Overall, this study found that variations in the leptin and leptin receptor genes are associated with measures of alcohol use, nicotine use, and anxiety. While this preliminary study adds support for a role of the leptin system in AUD and psychopathologies, additional studies are required to fully understand the underlying mechanisms and potential therapeutic implications of these findings.
Collapse
Affiliation(s)
- Brittney D Browning
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, United States
| | - Melanie L Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Bethesda, MD, United States
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, United States.,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Sara L Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, United States
| | - Colin A Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Rockville, MD, United States
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, United States.,Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, United States.,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, RI, United States.,Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
11
|
Fritz EM, Singewald N, De Bundel D. The Good, the Bad and the Unknown Aspects of Ghrelin in Stress Coping and Stress-Related Psychiatric Disorders. Front Synaptic Neurosci 2020; 12:594484. [PMID: 33192444 PMCID: PMC7652849 DOI: 10.3389/fnsyn.2020.594484] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
Ghrelin is a peptide hormone released by specialized X/A cells in the stomach and activated by acylation. Following its secretion, it binds to ghrelin receptors in the periphery to regulate energy balance, but it also acts on the central nervous system where it induces a potent orexigenic effect. Several types of stressors have been shown to stimulate ghrelin release in rodents, including nutritional stressors like food deprivation, but also physical and psychological stressors such as foot shocks, social defeat, forced immobilization or chronic unpredictable mild stress. The mechanism through which these stressors drive ghrelin release from the stomach lining remains unknown and, to date, the resulting consequences of ghrelin release for stress coping remain poorly understood. Indeed, ghrelin has been proposed to act as a stress hormone that reduces fear, anxiety- and depression-like behaviors in rodents but some studies suggest that ghrelin may - in contrast - promote such behaviors. In this review, we aim to provide a comprehensive overview of the literature on the role of the ghrelin system in stress coping. We discuss whether ghrelin release is more than a byproduct of disrupted energy homeostasis following stress exposure. Furthermore, we explore the notion that ghrelin receptor signaling in the brain may have effects independent of circulating ghrelin and in what way this might influence stress coping in rodents. Finally, we examine how the ghrelin system could be utilized as a therapeutic avenue in stress-related psychiatric disorders (with a focus on anxiety- and trauma-related disorders), for example to develop novel biomarkers for a better diagnosis or new interventions to tackle relapse or treatment resistance in patients.
Collapse
Affiliation(s)
- Eva Maria Fritz
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Innsbruck, Austria
| | - Dimitri De Bundel
- Department of Pharmaceutical Sciences, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
12
|
Vismara M, Girone N, Cirnigliaro G, Fasciana F, Vanzetto S, Ferrara L, Priori A, D’Addario C, Viganò C, Dell’Osso B. Peripheral Biomarkers in DSM-5 Anxiety Disorders: An Updated Overview. Brain Sci 2020; 10:E564. [PMID: 32824625 PMCID: PMC7464377 DOI: 10.3390/brainsci10080564] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Anxiety disorders are prevalent and highly disabling mental disorders. In recent years, intensive efforts focused on the search for potential neuroimaging, genetic, and peripheral biomarkers in order to better understand the pathophysiology of these disorders, support their diagnosis, and characterize the treatment response. Of note, peripheral blood biomarkers, as surrogates for the central nervous system, represent a promising instrument to characterize psychiatric disorders, although their role has not been extensively applied to clinical practice. In this report, the state of the art on peripheral biomarkers of DSM-5 (Diagnostic and Statistical Manual of Mental Disorders, 5th edition) Anxiety Disorders is presented, in order to examine their role in the pathogenesis of these conditions and their potential application for diagnosis and treatment. Available data on the cerebrospinal fluid and blood-based biomarkers related to neurotransmitters, neuropeptides, the hypothalamic-pituitary-adrenal axis, neurotrophic factors, and the inflammation and immune system are reviewed. Despite the wide scientific literature and the promising results in the field, only a few of the proposed peripheral biomarkers have been defined as a specific diagnostic instrument or have been identified as a guide in the treatment response to DSM-5 Anxiety Disorders. Therefore, further investigations are needed to provide new biological insights into the pathogenesis of anxiety disorders, to help in their diagnosis, and to tailor a treatment.
Collapse
Affiliation(s)
- Matteo Vismara
- Department of Mental Health, Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy; (N.G.); (G.C.); (F.F.); (S.V.); (L.F.); (C.V.); (B.D.)
| | - Nicolaja Girone
- Department of Mental Health, Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy; (N.G.); (G.C.); (F.F.); (S.V.); (L.F.); (C.V.); (B.D.)
| | - Giovanna Cirnigliaro
- Department of Mental Health, Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy; (N.G.); (G.C.); (F.F.); (S.V.); (L.F.); (C.V.); (B.D.)
| | - Federica Fasciana
- Department of Mental Health, Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy; (N.G.); (G.C.); (F.F.); (S.V.); (L.F.); (C.V.); (B.D.)
| | - Simone Vanzetto
- Department of Mental Health, Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy; (N.G.); (G.C.); (F.F.); (S.V.); (L.F.); (C.V.); (B.D.)
| | - Luca Ferrara
- Department of Mental Health, Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy; (N.G.); (G.C.); (F.F.); (S.V.); (L.F.); (C.V.); (B.D.)
| | - Alberto Priori
- Department of Health Sciences, Aldo Ravelli Center for Neurotechnology and Brain Therapeutic, University of Milan, 20142 Milan, Italy;
| | - Claudio D’Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy;
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Caterina Viganò
- Department of Mental Health, Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy; (N.G.); (G.C.); (F.F.); (S.V.); (L.F.); (C.V.); (B.D.)
| | - Bernardo Dell’Osso
- Department of Mental Health, Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy; (N.G.); (G.C.); (F.F.); (S.V.); (L.F.); (C.V.); (B.D.)
- Department of Health Sciences, Aldo Ravelli Center for Neurotechnology and Brain Therapeutic, University of Milan, 20142 Milan, Italy;
- Department of Psychiatry and Behavioral Sciences, Bipolar Disorders Clinic, Stanford University, Stanford, CA 94305, USA
- “Centro per lo studio dei meccanismi molecolari alla base delle patologie neuro-psico-geriatriche”, University of Milan, 20100 Milan, Italy
| |
Collapse
|