1
|
Baqai K, Bassetti JA, Kovanlikaya A, Seshan SV, Akchurin O. Fanconi-Bickel syndrome complicated by nephrocalcinosis and GFR decline. Pediatr Nephrol 2024; 39:3201-3204. [PMID: 38847860 DOI: 10.1007/s00467-024-06388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 09/20/2024]
Abstract
Fanconi-Bickel syndrome (FBS) is a rare genetic disorder of carbohydrate metabolism due to pathogenic variants in SLC2A2, a gene encoding glucose transporter 2 (GLUT2), which leads to accumulation of glycogen in the kidney and liver. While consequential complex proximal tubular dysfunction is well acknowledged in the literature, long-term trajectories of kidney function in patients with FBS have not been well characterized, and kidney biopsy is performed infrequently. Here, we report on a patient with FBS followed from infancy through young adulthood who presented early on with hypercalciuria, phosphaturia, and hypophosphatemia, complicated by chronic kidney disease development during childhood. Kidney biopsy, in addition to a widespread glycogen accumulation in proximal tubular epithelial cells, demonstrated medullary nephrocalcinosis. Screening for nephrocalcinosis may be warranted in pediatric patients with FBS, along with close surveillance of their kidney function.
Collapse
Affiliation(s)
| | - Jennifer A Bassetti
- Weill Cornell Medicine, New York, NY, USA
- New York-Presbyterian Hospital, New York, NY, USA
| | - Arzu Kovanlikaya
- Weill Cornell Medicine, New York, NY, USA
- New York-Presbyterian Hospital, New York, NY, USA
| | - Surya V Seshan
- Weill Cornell Medicine, New York, NY, USA
- New York-Presbyterian Hospital, New York, NY, USA
| | - Oleh Akchurin
- Weill Cornell Medicine, New York, NY, USA.
- New York-Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
2
|
Alsobaie S, Alageel AA, Ishfaq T, Ali Khan I, Alharbi KK. Examining the Genetic Role of rs8192675 Variant in Saudi Women Diagnosed with Polycystic Ovary Syndrome. Diagnostics (Basel) 2023; 13:3214. [PMID: 37892034 PMCID: PMC10606196 DOI: 10.3390/diagnostics13203214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Polycystic ovary syndrome is a complex disorder defined by the Rotterdam criteria. Insulin resistance is a common factor for the development of type 2 diabetes mellitus among women with PCOS. The SLC2A2 gene has been identified as a T2DM gene by genome-wide association studies in the rs8192675 SNP. This study aimed to investigate the rs8192675 SNP in women diagnosed with PCOS on a molecular level and further for T2DM development in the Saudi women. In this case-control study, 100 PCOS women and 100 healthy controls were selected. Among 100 PCOS women, 28 women showed T2DM development. Genotyping for rs8192675 SNP was performed by PCR-RFLP analysis. Additionally, Sanger sequencing was performed to validate the RFLP analysis. The obtained data were used for a statistical analysis for the genotype and allele frequencies, logistic regression, and ANOVA analysis. The clinical data confirmed the positive association between FBG, FI, FSH, TT, TC, HDLc, LDLc, and family histories (p < 0.05). HWE analysis was associated in both the PCOS cases and the control individuals. Genotype and allele frequencies were associated in PCOS women and strongly associated with women with PCOS who developed T2DM (p < 0.05). No association was found in the logistic regression model or ANOVA analysis studied in women with PCOS (p > 0.05). A strong association was observed between the rs8192675 SNP and women with PCOS who developed T2DM using ANOVA analysis (p < 0.05). This study confirms that the rs8192675 SNP is associated with women with PCOS and strongly associated with women with PCOS with developed T2DM in Saudi Arabia.
Collapse
Affiliation(s)
- Sarah Alsobaie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (S.A.); (A.A.A.); (K.K.A.)
| | - Arwa A. Alageel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (S.A.); (A.A.A.); (K.K.A.)
| | - Tahira Ishfaq
- Department of Obstetrics and Gynecology, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia;
| | - Imran Ali Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (S.A.); (A.A.A.); (K.K.A.)
| | - Khalid Khalaf Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (S.A.); (A.A.A.); (K.K.A.)
| |
Collapse
|
3
|
Chen H, Lyu JJ, Huang Z, Sun XM, Liu Y, Yuan CJ, Ye L, Yu D, Wu J. Case Report: Fanconi-Bickel Syndrome in a Chinese Girl With Diabetes and Severe Hypokalemia. Front Pediatr 2022; 10:897636. [PMID: 35757134 PMCID: PMC9218529 DOI: 10.3389/fped.2022.897636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022] Open
Abstract
Fanconi-Bickel syndrome (FBS) is a rare autosomal recessive carbohydrate metabolism disorder. The main symptoms of FBS are hepatomegaly, nephropathy, postprandial hyperglycemia, fasting hypoglycemia, and growth retardation. Hypokalemia is a rare clinical feature in patients with FBS. In this study, we present a neonate suffering from FBS. She presented with hypokalemia, dysglycaemia, glycosuria, hepatomegaly, abnormality of liver function, and brain MRI. Trio whole-exome sequencing (WES) and Sanger sequencing were performed to identify the causal gene variants. A compound heterozygous mutation (NM_000340.2; p. Trp420*) of SLC2A2 was identified. Here, we report a patient with FBS in a consanguineous family with diabetes, severe hypokalemia, and other typical FBS symptoms. Patients with common clinical features may be difficult to diagnose just by phenotypes in the early stage of life, but WES could be an important tool. We also discuss the use of insulin in patients with FBS and highlight the importance of a continuous glucose monitoring system (CGMS), not only in diagnosis but also to avoid hypoglycemic events.
Collapse
Affiliation(s)
- Hongbo Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Juan-Juan Lyu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Zhuo Huang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Xiao-Mei Sun
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Ying Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Chuan-Jie Yuan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Li Ye
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Dan Yu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Jin Wu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Sharari S, Abou-Alloul M, Hussain K, Ahmad Khan F. Fanconi-Bickel Syndrome: A Review of the Mechanisms That Lead to Dysglycaemia. Int J Mol Sci 2020; 21:E6286. [PMID: 32877990 PMCID: PMC7504390 DOI: 10.3390/ijms21176286] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022] Open
Abstract
Accumulation of glycogen in the kidney and liver is the main feature of Fanconi-Bickel Syndrome (FBS), a rare disorder of carbohydrate metabolism inherited in an autosomal recessive manner due to SLC2A2 gene mutations. Missense, nonsense, frame-shift (fs), in-frame indels, splice site, and compound heterozygous variants have all been identified in SLC2A2 gene of FBS cases. Approximately 144 FBS cases with 70 different SLC2A2 gene variants have been reported so far. SLC2A2 encodes for glucose transporter 2 (GLUT2) a low affinity facilitative transporter of glucose mainly expressed in tissues playing important roles in glucose homeostasis, such as renal tubular cells, enterocytes, pancreatic β-cells, hepatocytes and discrete regions of the brain. Dysfunctional mutations and decreased GLUT2 expression leads to dysglycaemia (fasting hypoglycemia, postprandial hyperglycemia, glucose intolerance, and rarely diabetes mellitus), hepatomegaly, galactose intolerance, rickets, and poor growth. The molecular mechanisms of dysglycaemia in FBS are still not clearly understood. In this review, we discuss the physiological roles of GLUT2 and the pathophysiology of mutants, highlight all of the previously reported SLC2A2 mutations associated with dysglycaemia, and review the potential molecular mechanisms leading to dysglycaemia and diabetes mellitus in FBS patients.
Collapse
Affiliation(s)
- Sanaa Sharari
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar;
- Department of Pediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha, Qatar;
| | - Mohamad Abou-Alloul
- Department of Pediatric Medicine, Saida Governmental University Hospital, Beirut Arab University, Beirut 115020, Lebanon;
| | - Khalid Hussain
- Department of Pediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha, Qatar;
| | - Faiyaz Ahmad Khan
- Department of Pediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha, Qatar;
| |
Collapse
|