1
|
Fansa S, Acosta A. The melanocortin-4 receptor pathway and the emergence of precision medicine in obesity management. Diabetes Obes Metab 2024; 26 Suppl 2:46-63. [PMID: 38504134 PMCID: PMC11893075 DOI: 10.1111/dom.15555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/21/2024]
Abstract
Over the past few decades, there has been a global surge in the prevalence of obesity, rendering it a globally recognized epidemic. Contrary to simply being a medical condition, obesity is an intricate disease with a multifactorial aetiology. Understanding the precise cause of obesity remains a challenge; nevertheless, there seems to be a complex interplay among biological, psychosocial and behavioural factors. Studies on the genetic factors of obesity have revealed several pathways in the brain that play a crucial role in food intake regulation. The best characterized pathway, thus far, is the leptin-melanocortin pathway, from which disruptions are responsible for the majority of monogenic obesity disorders. The effectiveness of conservative lifestyle interventions in addressing monogenic obesity has been limited. Therefore, it is crucial to complement the management strategy with pharmacological and surgical options. Emphasis has been placed on developing drugs aimed at replacing the absent signals, with the goal of restoring the pathway. In both monogenic and polygenic forms of obesity, outcomes differ across various interventions, likely due to the multifaceted nature of the disease. This underscores the need to explore alternative therapeutic strategies that can mitigate this heterogeneity. Precision medicine can be regarded as a powerful tool that can address this concern, as it values the understanding of the underlying abnormality triggering the disease and provides a tailored treatment accordingly. This would assist in optimizing outcomes of the current therapeutic approaches and even aid in the development of novel treatments capable of more effectively managing the global obesity epidemic.
Collapse
Affiliation(s)
- Sima Fansa
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Jia X, Fan S, Dong W, Li S, Zhang Y, Ma Y, Wang S. Setmelanotide optimization through fragment-growing, molecular docking in-silico method targeting MC4 receptor. J Biomol Struct Dyn 2023; 41:15411-15420. [PMID: 37126536 DOI: 10.1080/07391102.2023.2204385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/28/2023] [Indexed: 05/02/2023]
Abstract
Obesity has emerged as a global issue, but with the complex structures of multiple related important targets and their agonists or antagonists determined, the mechanism of ligand-protein interaction may offer new chances for developing new generation agonists anti-obesity. Based on the molecule surface of the cryo-EM protein structure 7AUE, we tried to replace D-Ala3 with D-Met in setmelanotide as the linker site for fragment-growing with De novo evolution. The simulation results indicate that the derivatives could improve the binding abilities with the melanocortin 4 receptor and the selectivity over the melanocortin 1 receptor. The improved selectivity of the newly designed derivatives is mainly due to the shape difference of the molecular surface at the orthosteric peptide-binding pocket between melanocortin 4 receptor and melanocortin 1 receptor. The new extended fragments could not only enhance the binding affinities but also function as a gripper to seize the pore, making it easier to balance and stabilize the other component of the new derivatives. Although it is challenging to synthesize the compounds designed in silico, this study may perhaps serve as a trigger for additional anti-obesity research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaopu Jia
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Shuai Fan
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Weili Dong
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Shaoyong Li
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Centre for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ying Ma
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Shuqing Wang
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Tao YX. Mutations in melanocortin-4 receptor: From fish to men. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:215-257. [PMID: 35595350 DOI: 10.1016/bs.pmbts.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Melanocortin-4 receptor (MC4R), expressed abundantly in the hypothalamus, is a critical regulator of energy homeostasis, including both food intake and energy expenditure. Shortly after the publication in 1997 of the Mc4r knockout phenotypes in mice, including increased food intake and severe obesity, the first mutations in MC4R were reported in humans in 1998. Studies in the subsequent two decades have established MC4R mutation as the most common monogenic form of obesity, especially in early-onset severe obesity. Studies in animals, from fish to mammals, have established the conserved physiological roles of MC4R in all vertebrates in regulating energy balance. Drug targeting MC4R has been recently approved for treating morbid genetic obesity. How the MC4R can be exploited for animal production is highly worthy of active investigation.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.
| |
Collapse
|
4
|
Šket R, Kotnik P, Bizjan BJ, Kocen V, Mlinarič M, Tesovnik T, Debeljak M, Battelino T, Kovač J. Heterozygous Genetic Variants in Autosomal Recessive Genes of the Leptin-Melanocortin Signalling Pathway Are Associated With the Development of Childhood Obesity. Front Endocrinol (Lausanne) 2022; 13:832911. [PMID: 35574020 PMCID: PMC9105721 DOI: 10.3389/fendo.2022.832911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Monogenic obesity is a severe, genetically determined disorder that affects up to 1/1000 newborns. Recent reports on potential new therapeutics and innovative clinical approaches have highlighted the need for early identification of individuals with rare genetic variants that can alter the functioning of the leptin-melanocortin signalling pathway, in order to speed up clinical intervention and reduce the risk of chronic complications. Therefore, next-generation DNA sequencing of central genes in the leptin-melanocortin pathway was performed in 1508 children and adolescents with and without obesity, aged 2-19 years. The recruited cohort comprised approximately 5% of the national paediatric population with obesity. The model-estimated effect size of rare variants in the leptin-melanocortin signalling pathway on longitudinal weight gain between carriers and non-carriers was derived. In total, 21 (1.4%) participants had known disease-causing heterozygous variants (DCVs) in the genes under investigation, and 62 (4.1%) participants were carriers of rare variants of unknown clinical significance (VUS). The estimated frequency of potential genetic variants associated with obesity (including rare VUS) ranged between 1/150 (VUS and DCV) and 1/850 (DCV) and differed significantly between participants with and without obesity. On average, the variants identified would result in approximately 7.6 kg (7.0-12.9 kg at the 95th percentile of body weight) (girls) and 8.4 kg (8.2-14.4 kg) (boys) of additional weight gain in carriers at age 18 years compared with subjects without obesity. In conclusion, children with a genetic predisposition to obesity can be promptly identified and may account for more than 6% of obesity cases. Early identification of genetic variants in the LEPR, PCSK1, POMC, MC3R and MC4R genes could reduce the societal burden and improve the clinical management of early severe childhood obesity and its implementation should be further investigated.
Collapse
Affiliation(s)
- Robert Šket
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
| | - Primož Kotnik
- Department of Pediatrics Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Barbara Jenko Bizjan
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
| | - Valentina Kocen
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
| | - Matej Mlinarič
- Department of Pediatrics Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
| | - Tine Tesovnik
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
| | - Maruša Debeljak
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Pediatrics Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Kovač
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Jernej Kovač,
| |
Collapse
|
5
|
The role of leptin in patients recovering from Anorexia Nervosa. CURRENT PROBLEMS OF PSYCHIATRY 2021. [DOI: 10.2478/cpp-2021-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction: Anorexia nervosa (AN) is a mental disorder with the highest death rate. The characteristic feature of AN is endocrine dysregulations, including changes in adipose-tissue secreted hormones, especially adipokines. The most widely studied of them is leptin whose role in the pathophysiology and prognosis of AN is confirmed in more and more studies. The aim of the study was to summarize the role of endocrine disruptions with particular emphasis on leptin in the pathophysiology of AN.
Material and methods: For the literature review, the electronic databases PubMed, Cochrane and Google Scholar search were used with the following keywords: eating disorders, adipokines, leptin, metreleptin, satiety, hunger, anorexia, obesity, for studies listed from database inception to October 2021.
Results: Leptin, produced mainly by white adipose tissue, inhibits the hunger center in the hypothalamus by negative feedback with ghrelin secreted by the gastrointestinal tract. Leptin is involved in numerous biological functions, including body weight regulation, innate and adaptive immunity regulation, reproduction, and bone formation. Studies confirm decreased leptin levels in AN individuals. In recent years, extensive experience has been gained with leptin as a drug in clinical trials. The studies suggested that treatment can restore menstrual function and bone health and improve mood with unclear body weight effects.
Conclusions: Focusing on leptin-related changes is a promising approach to improve AN management. Assessment of leptin levels in AN patients could be a useful tool for therapy monitoring. Treatment with leptin could reverse unfavourable changes induced by diet restriction, including mood symptoms, loss of bone mass and menstrual function. However, the results of these studies need confirmation on larger groups of patients.
Collapse
|
6
|
Fibroblast Growth Factor 21 (FGF21) Administration Sex-Specifically Affects Blood Insulin Levels and Liver Steatosis in Obese Ay Mice. Cells 2021; 10:cells10123440. [PMID: 34943946 PMCID: PMC8700098 DOI: 10.3390/cells10123440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022] Open
Abstract
FGF21 is a promising candidate for treating obesity, diabetes, and NAFLD; however, some of its pharmacological effects are sex-specific in mice with the Ay mutation that evokes melanocortin receptor 4 blockade, obesity, and hepatosteatosis. This suggests that the ability of FGF21 to correct melanocortin obesity may depend on sex. This study compares FGF21 action on food intake, locomotor activity, gene expression, metabolic characteristics, and liver state in obese Ay males and females. Ay mice were administered FGF21 for seven days, and metabolic parameters and gene expression in different tissues were assessed. Placebo-treated females were more obese than males and had lower levels of blood insulin and liver triglycerides, and higher expression of genes for insulin signaling in the liver, white adipose tissue (WAT) and muscles, and pro-inflammatory cytokines in the liver. FGF21 administration did not affect body weight, and increased food intake, locomotor activity, expression of Fgf21 and Ucp1 in brown fat and genes related to lipolysis and insulin action in WAT regardless of sex; however, it decreased hyperinsulinemia and hepatic lipid accumulation and increased muscle expression of Cpt1 and Irs1 only in males. Thus, FGF21’s beneficial effects on metabolic disorders associated with melanocortin obesity are more pronounced in males.
Collapse
|
7
|
Structures of active melanocortin-4 receptor-Gs-protein complexes with NDP-α-MSH and setmelanotide. Cell Res 2021; 31:1176-1189. [PMID: 34561620 PMCID: PMC8563958 DOI: 10.1038/s41422-021-00569-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
The melanocortin-4 receptor (MC4R), a hypothalamic master regulator of energy homeostasis and appetite, is a class A G-protein-coupled receptor and a prime target for the pharmacological treatment of obesity. Here, we present cryo-electron microscopy structures of MC4R–Gs-protein complexes with two drugs recently approved by the FDA, the peptide agonists NDP-α-MSH and setmelanotide, with 2.9 Å and 2.6 Å resolution. Together with signaling data from structure-derived MC4R mutants, the complex structures reveal the agonist-induced origin of transmembrane helix (TM) 6-regulated receptor activation. The ligand-binding modes of NDP-α-MSH, a high-affinity linear variant of the endogenous agonist α-MSH, and setmelanotide, a cyclic anti-obesity drug with biased signaling toward Gq/11, underline the key role of TM3 in ligand-specific interactions and of calcium ion as a ligand-adaptable cofactor. The agonist-specific TM3 interplay subsequently impacts receptor–Gs-protein interfaces at intracellular loop 2, which also regulates the G-protein coupling profile of this promiscuous receptor. Finally, our structures reveal mechanistic details of MC4R activation/inhibition, and provide important insights into the regulation of the receptor signaling profile which will facilitate the development of tailored anti-obesity drugs.
Collapse
|
8
|
MCH-R1 Antagonist GPS18169, a Pseudopeptide, Is a Peripheral Anti-Obesity Agent in Mice. Molecules 2021; 26:molecules26051291. [PMID: 33673598 PMCID: PMC7957705 DOI: 10.3390/molecules26051291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 01/01/2023] Open
Abstract
Melanin-concentrating hormone (MCH) is a 19 amino acid long peptide found in the brain of animals, including fishes, batrachians, and mammals. MCH is implicated in appetite and/or energy homeostasis. Antagonists at its receptor (MCH-R1) could be major tools (or ultimately drugs) to understand the mechanism of MCH action and to fight the obesity syndrome that is a worldwide societal health problem. Ever since the deorphanisation of the MCH receptor, we cloned, expressed, and characterized the receptor MCH-R1 and started a vast medicinal chemistry program aiming at the discovery of such usable compounds. In the present final work, we describe GPS18169, a pseudopeptide antagonist at the MCH-R1 receptor with an affinity in the nanomolar range and a Ki for its antagonistic effect in the 20 picomolar range. Its metabolic stability is rather ameliorated compared to its initial parent compound, the antagonist S38151. We tested it in an in vivo experiment using high diet mice. GPS18169 was found to be active in limiting the accumulation of adipose tissues and, correlatively, we observed a normalization of the insulin level in the treated animals, while no change in food or water consumption was observed.
Collapse
|