1
|
Henne SK, Hochfeld LM, Bartmann W, Welss T, Nöthen MM, Heilmann-Heimbach S. Molecular monitoring of short- and long-term transcriptional effects of hair growth stimulating agents. PLoS One 2024; 19:e0316128. [PMID: 39715237 DOI: 10.1371/journal.pone.0316128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024] Open
Abstract
Male-pattern hair loss (MPHL) is the most common form of hair loss in humans. Limited treatment options exist, which are not curative and vary in efficacy and invasiveness. Therapeutic and cosmetic hair growth stimulating agents that alleviate hair loss at a low risk of side effects are therefore of interest. The efficacy of hair growth-stimulating agents is mainly evaluated by hair comb tests and trichograms. These methods do not offer molecular insights, which can provide early insights into treatment response and may be useful in monitoring long-term compliance and efficacy. We propose a general concept for the molecular monitoring of hair growth stimulating agent treatment response in vivo, based on RNA and microRNA expression profiling before and during treatment. The molecular profile can be extended by individual genotype information to assess the impact of genetic constitution on treatment response. To test this methodological approach, 91 male participants with visible signs of and/or a family history of MPHL were assigned to four groups to investigate the effects of three hair growth stimulating agents versus placebo. mRNA- and microRNA-Seq was performed on plucked hair follicle samples before, after four days, and after six weeks of treatment. Genotyping was performed on DNA extracted from blood or saliva samples. Differential expression analyses identified 52 differentially expressed genes and 17 modulated pathways following treatment with the three hair growth stimulating agents. While the majority of effects were detectable after 6-week treatment, 23% of genes showed significant regulation after 4-day treatment. Integration with genetic data through pathway-based polygenic risk score analyses identified 5 associations between genetic background and treatment effects, pointing to a potential value of companion diagnostics for hair growth stimulating agents. Our data show that this molecular monitoring approach provides insights into hair growth stimulating agent treatment response as early as days within commencing treatment, and is suitable to monitor long-term treatment effects and compliance. Combined with genetic profiling, this approach may enable personalized prediction of treatment efficacy and compliance.
Collapse
Affiliation(s)
- Sabrina K Henne
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Lara M Hochfeld
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | | | | | - Markus M Nöthen
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Henne SK, Aldisi R, Sivalingam S, Hochfeld LM, Borisov O, Krawitz PM, Maj C, Nöthen MM, Heilmann-Heimbach S. Analysis of 72,469 UK Biobank exomes links rare variants to male-pattern hair loss. Nat Commun 2023; 14:5492. [PMID: 37737258 PMCID: PMC10517150 DOI: 10.1038/s41467-023-41186-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 08/24/2023] [Indexed: 09/23/2023] Open
Abstract
Male-pattern hair loss (MPHL) is common and highly heritable. While genome-wide association studies (GWAS) have generated insights into the contribution of common variants to MPHL etiology, the relevance of rare variants remains unclear. To determine the contribution of rare variants to MPHL etiology, we perform gene-based and single-variant analyses in exome-sequencing data from 72,469 male UK Biobank participants. While our population-level risk prediction suggests that rare variants make only a minor contribution to general MPHL risk, our rare variant collapsing tests identified a total of five significant gene associations. These findings provide additional evidence for previously implicated genes (EDA2R, WNT10A) and highlight novel risk genes at and beyond GWAS loci (HEPH, CEPT1, EIF3F). Furthermore, MPHL-associated genes are enriched for genes considered causal for monogenic trichoses. Together, our findings broaden the MPHL-associated allelic spectrum and provide insights into MPHL pathobiology and a shared basis with monogenic hair loss disorders.
Collapse
Affiliation(s)
- Sabrina Katrin Henne
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Rana Aldisi
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Sugirthan Sivalingam
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
- Department of Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - Lara Maleen Hochfeld
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Oleg Borisov
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Peter Michael Krawitz
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Carlo Maj
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
- Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - Markus Maria Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany.
| |
Collapse
|