1
|
Rimoli CV, Moretti C, Soldevila F, Brémont E, Ventalon C, Gigan S. Demixing fluorescence time traces transmitted by multimode fibers. Nat Commun 2024; 15:6286. [PMID: 39060262 PMCID: PMC11282286 DOI: 10.1038/s41467-024-50306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Optical methods based on thin multimode fibers (MMFs) are promising tools for measuring neuronal activity in deep brain regions of freely moving mice thanks to their small diameter. However, current methods are limited: while fiber photometry provides only ensemble activity, imaging techniques using of long multimode fibers are very sensitive to bending and have not been applied to unrestrained rodents yet. Here, we demonstrate the fundamentals of a new approach using a short MMF coupled to a miniscope. In proof-of-principle in vitro experiments, we disentangled spatio-temporal fluorescence signals from multiple fluorescent sources transmitted by a thin (200 µm) and short (8 mm) MMF, using a general unconstrained non-negative matrix factorization algorithm directly on the raw video data. Furthermore, we show that low-cost open-source miniscopes have sufficient sensitivity to image the same fluorescence patterns seen in our proof-of-principle experiment, suggesting a new avenue for novel minimally invasive deep brain studies using multimode fibers in freely behaving mice.
Collapse
Affiliation(s)
- Caio Vaz Rimoli
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 Rue Lhomond, Paris, F-75005, France
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Claudio Moretti
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 Rue Lhomond, Paris, F-75005, France
| | - Fernando Soldevila
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 Rue Lhomond, Paris, F-75005, France
| | - Enora Brémont
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Cathie Ventalon
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France.
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 Rue Lhomond, Paris, F-75005, France.
| |
Collapse
|
2
|
Piscopo L, Collard L, Pisano F, Balena A, Vittorio MD, Pisanello F. Advantages of internal reference in holographic shaping ps supercontinuum pulses through multimode optical fibers. OPTICS EXPRESS 2024; 32:24144-24155. [PMID: 39538862 PMCID: PMC11595516 DOI: 10.1364/oe.528043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 11/16/2024]
Abstract
The use of wavefront shaping has found extensive application to develop ultra-thin endoscopic techniques based on multimode optical fibers (MMF), leveraging on the ability to control modal interference at the fiber's distal end. Although several techniques have been developed to achieve MMF-based laser-scanning imaging, the use of short laser pulses is still a challenging application. This is due to the intrinsic delay and temporal broadening introduced by the fiber itself, which requires additional compensation optics on the reference beam during the calibration procedure. Here we combine the use of a supercontinuum laser and an internal reference-based wavefront shaping system to produce focused spot scanning in multiple planes at the output of a step-index multimode fiber, without the requirement of a delay line or pulse pre-compensation. We benchmarked the performances of internal vs external reference during calibration, finding that the use of an internal reference grants better focusing efficiency. The system was characterized at different wavelengths, showcasing the wavelength resiliency of the different parameters. Lastly, the scanning of focal planes beyond the fiber facet was achieved by exploiting the chromato-axial memory effect.
Collapse
Affiliation(s)
- Linda Piscopo
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE 73010, Italy
- Dipartimento di Ingegneria Dell’Innovazione, Università del Salento, Lecce 73100, Italy
| | - Liam Collard
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE 73010, Italy
- RAISE Ecosystem, Genova, Italy
| | - Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE 73010, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padova, Via Marzolo 8, 35131, Padova, Italy
| | - Antonio Balena
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE 73010, Italy
- Laboratoire Kastler Brossel, Sorbonne University, CNRS, ENS-PSL University, Collège de France, Paris, 75005, France
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE 73010, Italy
- Dipartimento di Ingegneria Dell’Innovazione, Università del Salento, Lecce 73100, Italy
- RAISE Ecosystem, Genova, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE 73010, Italy
- RAISE Ecosystem, Genova, Italy
| |
Collapse
|
3
|
Mohammadzadeh M, Tabakhi S, Sayeh MR. Adaptive noise-resilient deep learning for image reconstruction in multimode fiber scattering. APPLIED OPTICS 2024; 63:3003-3014. [PMID: 38856444 DOI: 10.1364/ao.519285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/18/2024] [Indexed: 06/11/2024]
Abstract
This research offers a comprehensive exploration of three pivotal aspects within the realm of fiber optics and piezoelectric materials. The study delves into the influence of voltage variation on piezoelectric displacement, examines the effects of bending multimode fiber (MMF) on data transmission, and scrutinizes the performance of an autoencoder in MMF image reconstruction with and without additional noise. To assess the impact of voltage variation on piezoelectric displacement, experiments were conducted by applying varying voltages to a piezoelectric material, meticulously measuring its radial displacement. The results revealed a notable increase in displacement with higher voltage, presenting implications for fiber stability and overall performance. Additionally, the investigation into the effects of bending MMF on data transmission highlighted that the bending process causes the fiber to become leaky and radiate power radially, potentially affecting data transmission. This crucial insight emphasizes the necessity for further research to optimize data transmission in practical fiber systems. Furthermore, the performance of an autoencoder model was evaluated using a dataset of MMF images, in diverse scenarios. The autoencoder exhibited impressive accuracy in reconstructing MMF images with high fidelity. The results underscore the significance of ongoing research in these domains, propelling advancements in fiber optic technology.
Collapse
|
4
|
Qiu T, Cao H, Liu K, Yu LY, Levy M, Lendaro E, Wang F, You S. Spectral-temporal-spatial customization via modulating multimodal nonlinear pulse propagation. Nat Commun 2024; 15:2031. [PMID: 38448415 PMCID: PMC10918100 DOI: 10.1038/s41467-024-46244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/20/2024] [Indexed: 03/08/2024] Open
Abstract
Multimode fibers (MMFs) are gaining renewed interest for nonlinear effects due to their high-dimensional spatiotemporal nonlinear dynamics and scalability for high power. High-brightness MMF sources with effective control of the nonlinear processes would offer possibilities in many areas from high-power fiber lasers, to bioimaging and chemical sensing, and to intriguing physics phenomena. Here we present a simple yet effective way of controlling nonlinear effects at high peak power levels. This is achieved by leveraging not only the spatial but also the temporal degrees of freedom during multimodal nonlinear pulse propagation in step-index MMFs, using a programmable fiber shaper that introduces time-dependent disorders. We achieve high tunability in MMF output fields, resulting in a broadband high-peak-power source. Its potential as a nonlinear imaging source is further demonstrated through widely tunable two-photon and three-photon microscopy. These demonstrations provide possibilities for technology advances in nonlinear optics, bioimaging, spectroscopy, optical computing, and material processing.
Collapse
Affiliation(s)
- Tong Qiu
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Honghao Cao
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kunzan Liu
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Li-Yu Yu
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manuel Levy
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eva Lendaro
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fan Wang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sixian You
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
5
|
Khonina SN, Kazanskiy NL, Butt MA. Optical Fibre-Based Sensors-An Assessment of Current Innovations. BIOSENSORS 2023; 13:835. [PMID: 37754069 PMCID: PMC10526340 DOI: 10.3390/bios13090835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023]
Abstract
Optical fibre sensors are an essential subset of optical fibre technology, designed specifically for sensing and measuring several physical parameters. These sensors offer unique advantages over traditional sensors, making them gradually more valuable in a wide range of applications. They can detect extremely small variations in the physical parameters they are designed to measure, such as analytes in the case of biosensing. This high sensitivity allows them to detect subtle variations in temperature, pressure, strain, the refractive index of analytes, vibration, and other environmental factors with exceptional accuracy. Moreover, these sensors enable remote sensing capabilities. Since light signals are used to carry information, the sensing elements can be placed at distant or inaccessible sites and still communicate the data back to the central monitoring system without signal degradation. In recent times, different attractive configurations and approaches have been proposed to enhance the sensitivity of the optical fibre-based sensor and are briefly explained in this review. However, we believe that the choice of optical fibre sensor configuration should be designated based on the specific application. As these sensors continue to evolve and improve, they will play an increasingly vital role in critical monitoring and control applications across various industries.
Collapse
Affiliation(s)
- Svetlana N. Khonina
- Samara National Research University, 443086 Samara, Russia
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Nikolay L. Kazanskiy
- Samara National Research University, 443086 Samara, Russia
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | | |
Collapse
|
6
|
Michailow W, Almond NW, Beere H, Ritchie DA. Cylindrical Multimode Waveguides as Focusing Interferometric Systems. ACS PHOTONICS 2023; 10:1756-1768. [PMID: 37363631 PMCID: PMC10288537 DOI: 10.1021/acsphotonics.2c02030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Indexed: 06/28/2023]
Abstract
Delivery and focusing of radiation requires a variety of optical elements such as waveguides and mirrors or lenses. Heretofore, they were used separately, the former for radiation delivery, the latter for focusing. Here, we show that cylindrical multimode waveguides can both deliver and simultaneously focus radiation, without any external lenses or parabolic mirrors. We develop an analytical, ray-optical model to describe radiation propagation within and after the end of cylindrical multimode waveguides and demonstrate the focusing effect theoretically and experimentally at terahertz frequencies. In the focused spot, located at a distance of several millimeters to a few centimeters away from the waveguide end, typical for focal lengths in optical setups, we achieve a more than 8.4× higher intensity than the cross-sectional average intensity and compress the half-maximum spot area of the incident beam by a factor of >15. Our results represent the first practical realization of a focusing system consisting of only a single cylindrical multimode waveguide, that delivers radiation from one focused spot into another focused spot in free space, with focal distances that are much larger than both the radiation wavelength and the waveguide radius. The results enable design and optimization of cylindrical waveguide-containing systems and demonstrate a precise optical characterization method for cylindrical structures and objects.
Collapse
Affiliation(s)
- Wladislaw Michailow
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, CB3 0HE Cambridge, United Kingdom
| | - Nikita W. Almond
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, CB3 0HE Cambridge, United Kingdom
| | - Harvey
E. Beere
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, CB3 0HE Cambridge, United Kingdom
| | - David A. Ritchie
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, CB3 0HE Cambridge, United Kingdom
- Department
of Physics, Swansea University, Singleton Park, Sketty, SA2 8PP Swansea, U.K.
| |
Collapse
|
7
|
Sun F, Jiang H, Wang H, Zhong Y, Xu Y, Xing Y, Yu M, Feng LW, Tang Z, Liu J, Sun H, Wang H, Wang G, Zhu M. Soft Fiber Electronics Based on Semiconducting Polymer. Chem Rev 2023; 123:4693-4763. [PMID: 36753731 DOI: 10.1021/acs.chemrev.2c00720] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Fibers, originating from nature and mastered by human, have woven their way throughout the entire history of human civilization. Recent developments in semiconducting polymer materials have further endowed fibers and textiles with various electronic functions, which are attractive in applications such as information interfacing, personalized medicine, and clean energy. Owing to their ability to be easily integrated into daily life, soft fiber electronics based on semiconducting polymers have gained popularity recently for wearable and implantable applications. Herein, we present a review of the previous and current progress in semiconducting polymer-based fiber electronics, particularly focusing on smart-wearable and implantable areas. First, we provide a brief overview of semiconducting polymers from the viewpoint of materials based on the basic concepts and functionality requirements of different devices. Then we analyze the existing applications and associated devices such as information interfaces, healthcare and medicine, and energy conversion and storage. The working principle and performance of semiconducting polymer-based fiber devices are summarized. Furthermore, we focus on the fabrication techniques of fiber devices. Based on the continuous fabrication of one-dimensional fiber and yarn, we introduce two- and three-dimensional fabric fabricating methods. Finally, we review challenges and relevant perspectives and potential solutions to address the related problems.
Collapse
Affiliation(s)
- Fengqiang Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Hao Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoyu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yueheng Zhong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yiman Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yi Xing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Muhuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Key Laboratory of Lightweight Structural Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liang-Wen Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Zheng Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Jun Liu
- National Key Laboratory on Electromagnetic Environment Effects and Electro-Optical Engineering, Nanjing 210007, China
| | - Hengda Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|