1
|
Lu Y, Zhang T, Chen K, Canavese F, Huang C, Yang H, Shi J, He W, Zheng Y, Chen S. Application of biodegradable implants in pediatric orthopedics: shifting from absorbable polymers to biodegradable metals. Bioact Mater 2025; 50:189-214. [PMID: 40256329 PMCID: PMC12008652 DOI: 10.1016/j.bioactmat.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/05/2025] [Accepted: 04/02/2025] [Indexed: 04/22/2025] Open
Abstract
Over the past two decades, advances in pediatric orthopedics and closed reduction combined with percutaneous internal fixation techniques have led to significant growth in pediatric orthopedics surgery. Implants such as Kirschner-wires, cannulated screws and elastic stabilization intramedullary nails are commonly used in these procedures. However, traditional implants made of metal or inert materials are not absorbable, leading to complications that affect treatment outcomes. To address this issue, absorbable materials with excellent mechanical properties, good biocompatibility, and controlled degradation rates have been developed and applied in clinical practice. These materials include absorbable polymers and biodegradable metals. This article provides a comprehensive summary of these resorbable materials from a clinician's perspective. In addition, an in-depth discussion of the feasibility of their clinical applications and related research in pediatric orthopedics is included. We found that the applications of absorbable implants in pediatric orthopedics are shifting from absorbable polymers to biodegradable metals and emphasize that the functional characteristics of resorbable materials must be coordinated and complementary to the treatment in pediatric orthopedics.
Collapse
Affiliation(s)
- Yunan Lu
- Department of Pediatric Orthopedics, Fuzhou Second General Hospital, The Third Clinical Medicine College of Fujian Medical University, 47th Shangteng Road of Cangshan District, Fuzhou, 350007, Fujian, China
- Department of Emergency Trauma Surgery, Shengli Clinical Medical College of Fujian Medical University, Shengli Hospital affiliated to Fuzhou University, Fuzhou, 350001, China
| | - Ting Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Kai Chen
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong, China
| | - Federico Canavese
- Orthopedic and Traumatology Department, IRCCS Istituto Giannina Gaslini, DISC-Dipartimento di scienze chirurgiche e diagnostiche integrate, University of Genova, Genova, Italy
| | - Chenyang Huang
- School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Hongtao Yang
- School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Jiahui Shi
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Wubing He
- Department of Emergency Trauma Surgery, Shengli Clinical Medical College of Fujian Medical University, Shengli Hospital affiliated to Fuzhou University, Fuzhou, 350001, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Shunyou Chen
- Department of Pediatric Orthopedics, Fuzhou Second General Hospital, The Third Clinical Medicine College of Fujian Medical University, 47th Shangteng Road of Cangshan District, Fuzhou, 350007, Fujian, China
- Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopedic Trauma (2020Y2014), Fuzhou, 350007, China
- Key Clinical Specialty of Fujian Province and Fuzhou City (20220104), Fuzhou, China
| |
Collapse
|
2
|
Dawood RM, Mahdee AF. Fabrication and characterization of 3D-printed polymeric-based scaffold coated with bioceramic and naringin for a potential use in dental pulp regeneration (in vitro study). Int Endod J 2025; 58:627-642. [PMID: 39815625 DOI: 10.1111/iej.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/12/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025]
Abstract
AIM 3D-printed scaffolds loaded with healing directed agents could be employed for better treatment outcome in regenerative dentistry. The aim of this study was to fabricate and characterize simple 3D-printed poly lactic acid (PLA) scaffolds coated with nanoHydroxyapatite (nHA), Naringin (NAR), or their combination, and testing their morphological, chemical, mechanical, antibacterial, biocompatible and bioactive properties. METHODOLOGY Two variants pore sizes, 300 and 700 μm, of 3D-printed PLA disc scaffolds measuring (10 × 1 mm) were fabricated. These scaffolds were dip-coated with nHA, NAR, or both (nHA/NAR). Field emission scanning electron microscopy (FeSEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transforms infrared (FTIR), compressive and flexural strength testing was employed for optimizing pore size. Then, antibacterial activity against isolated Streptococcus mutans and Enterococcus faecalis, and cytotoxicity against normal human fibroblast were assessed. Additionally, appetite formation on scaffold surfaces was assessed after storage in simulated body fluid (SBF) for 14 days by further using FeSEM, EDX and XRD. RESULTS FeSEM showed uniform structure for 3D-printed scaffolds in both pore size designs, and a consistent surface coating with nHA and NAR, which were further confirmed by EDX and FTIR. However, mechanical testing revealed statistical significant higher compressive and flexural strengths (p < .000) for 300 μm pore size scaffolds. Statistical significant antibacterial activities (p < .05) were also found with PLA/NAR, and PLA/nHA /NAR scaffolds in comparison with neat. The MTT assay revealed biocompatibility of PLA, nHA and NAR, with the combinations of the latter two working synergistically. Lastly, the formation of a calcium-phosphate appetite layer was recognized on the surface of PLA/nHA, PLA/nHA/NAR scaffold after being stored in SBF. CONCLUSIONS 3D-printed, 300 μm pore size, PLA scaffold coated with a combination of nHA and NAR showed the best surface characteristics and improved mechanical, antibacterial and biocompatible properties for further investigation in regenerative studies.
Collapse
Affiliation(s)
- Reem Mones Dawood
- Restorative and Aesthetic Dentistry Department, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Anas Falah Mahdee
- Restorative and Aesthetic Dentistry Department, College of Dentistry, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
3
|
Yu W, Zhou D, Liu F, Li X, Xiao L, Rafique M, Li Z, Rodrigues J, Sheng R, Li Y. Conjugation of PDLA onto MgO microspheres: comparison between solution grafting and melt grafting methods. J Mater Chem B 2025; 13:2674-2681. [PMID: 39840864 DOI: 10.1039/d4tb02692f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Magnesium oxide (MgO) is known for its bioactivity and osteoconductivity when incorporated into biodegradable poly(lactic acid) (PLA), whereas the weak interfacial bonding between MgO microspheres (mMPs) and PLA often leads to suboptimal composite properties with uncontrollable functionality. Conjugation of mMPs with PLA may offer a good way to enhance their compatibility. In this study, we systematically investigated two grafting techniques, solution grafting (Sol) and melt grafting (Mel), to decorate poly (D-lactic acid) (PDLA) on mMPs pre-treated by prioritized hydration to obtain Sol MPs and Mel MPs, in order to optimize the grafting efficiency and improve their controllability in the properties including the crystal structure and surface morphology. Meanwhile, the Sol method showed an improved grafting ratio (2.9 times higher) compared to the Mel method. The conjugation of mMPs with PDLA effectively neutralized the rapid pH increase during the degradation of pure mMPs, which could be used for sustainable delivery of the Mg2+ ions. Moreover, the Sol MPs exhibited the lowest degradation rate constant, which could be well fitted by the first-order dynamic model, suggesting a transformation of the mMP degradation mode from bulk degradation to surface degradation. This change in the biodegradation mode was beneficial for decreasing the over-basic effect caused by the quick degradation of pure mMPs, thus extending their application in the development of PDLA/MgO composites towards tissue engineering or regenerative medicine.
Collapse
Affiliation(s)
- Wenhao Yu
- Engineering Research Centre for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Dong Zhou
- Engineering Research Centre for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Wenzhou Institute of Shanghai University, Wenzhou Key Laboratory of Tissue Regeneration Medical Materials, Wenzhou 325000, China
| | - Fangrui Liu
- Engineering Research Centre for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xu Li
- Engineering Research Centre for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Lan Xiao
- School of Medicine and Dentistry, Griffith University, Queensland 4222, Australia
| | - Muhammad Rafique
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhiyong Li
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390, Funchal, Madeira, Portugal
| | - Ruilong Sheng
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390, Funchal, Madeira, Portugal
| | - Yulin Li
- Engineering Research Centre for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Wenzhou Institute of Shanghai University, Wenzhou Key Laboratory of Tissue Regeneration Medical Materials, Wenzhou 325000, China
| |
Collapse
|
4
|
Zhao R, Meng X, Pan Z, Li Y, Qian H, Zhu X, Yang X, Zhang X. Advancements in nanohydroxyapatite: synthesis, biomedical applications and composite developments. Regen Biomater 2024; 12:rbae129. [PMID: 39776858 PMCID: PMC11703556 DOI: 10.1093/rb/rbae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 01/11/2025] Open
Abstract
Nanohydroxyapatite (nHA) is distinguished by its exceptional biocompatibility, bioactivity and biodegradability, qualities attributed to its similarity to the mineral component of human bone. This review discusses the synthesis techniques of nHA, highlighting how these methods shape its physicochemical attributes and, in turn, its utility in biomedical applications. The versatility of nHA is further enhanced by doping with biologically significant ions like magnesium or zinc, which can improve its bioactivity and confer therapeutic properties. Notably, nHA-based composites, incorporating metal, polymeric and bioceramic scaffolds, exhibit enhanced osteoconductivity and osteoinductivity. In orthopedic field, nHA and its composites serve effectively as bone graft substitutes, showing exceptional osteointegration and vascularization capabilities. In dentistry, these materials contribute to enamel remineralization, mitigate tooth sensitivity and are employed in surface modification of dental implants. For cancer therapy, nHA composites offer a promising strategy to inhibit tumor growth while sparing healthy tissues. Furthermore, nHA-based composites are emerging as sophisticated platforms with high surface ratio for the delivery of drugs and bioactive substances, gradually releasing therapeutic agents for progressive treatment benefits. Overall, this review delineates the synthesis, modifications and applications of nHA in various biomedical fields, shed light on the future advancements in biomaterials research.
Collapse
Affiliation(s)
- Rui Zhao
- School of Medicine, Department of Inspection, Jiangsu University, Zhenjiang 212013, China
| | - Xiang Meng
- School of Medicine, Department of Inspection, Jiangsu University, Zhenjiang 212013, China
| | - Zixian Pan
- School of Medicine, Department of Inspection, Jiangsu University, Zhenjiang 212013, China
| | - Yongjia Li
- School of Medicine, Department of Inspection, Jiangsu University, Zhenjiang 212013, China
| | - Hui Qian
- School of Medicine, Department of Inspection, Jiangsu University, Zhenjiang 212013, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
5
|
Sharma R, Mehrotra N, Singh I, Pal K. Development and characterization of PLA nanocomposites reinforced with bio-ceramic particles for orthognathic implants: Enhanced mechanical and biological properties. Int J Biol Macromol 2024; 282:136751. [PMID: 39481714 DOI: 10.1016/j.ijbiomac.2024.136751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/07/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
The clinical application of osteofixation materials is crucial for maxillofacial reconstruction and orthognathic surgeries. To overcome the limitations of traditional metallic implants, bioabsorbable materials are gaining popularity due to their ability to avoid secondary removal surgeries and reduce stress shielding. This study investigates third-generation biomaterials, focusing on polylactic acid (PLA) for its biocompatibility and biodegradability, and hydroxyapatite (HAP) for its bioactive osteoconductive and bioresorbable properties. Eggshell nanoparticles (ES-NP), HAP, and bioinert alumina particles coated with titanium dioxide (TiO2@Al2O3) were prepared using ball milling, co-precipitation, and sol-gel methods, respectively. PLA-based nanocomposites PLA/ESNP/Al2O3 (PEA), PLA/HAP/Al2O3 (PHA), PLA/ESNP/TiO2@Al2O3 (PEAT), and PLA/HAP/TiO2@Al2O3 (PHAT) were fabricated via solvent casting. Characterization techniques including X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), and Field-Emission Scanning Electron Microscopy (FE-SEM) were used to analyze the developed nanoparticles and composites. Results indicated PEAT and PHAT composites exhibited tensile strengths of 33.59 ± 0.38 MPa and 32.46 ± 0.46 MPa, tensile moduli of 1756.17 ± 95.43 MPa and 2367.21 ± 158.84 MPa, and shore d hardness values of 84.10 ± 1.45 SHN and 78.00 ± 2.25 SHN, respectively. Both composites achieved a wettability angle of ∼65° and surface roughness below 2.19 μm, enhancing osteoblast adhesion. Additionally, MG63 cell viability was approximately 80 %, and hemolysis rates were below 2.17 %, demonstrating their potential for maxillofacial implant applications.
Collapse
Affiliation(s)
- Rahul Sharma
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| | - Neha Mehrotra
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| | - Inderdeep Singh
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| | - Kaushik Pal
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
6
|
Omigbodun FT, Oladapo BI. Enhanced Mechanical Properties and Degradation Control of Poly(Lactic) Acid/Hydroxyapatite/Reduced Graphene Oxide Composites for Advanced Bone Tissue Engineering Application. Biomimetics (Basel) 2024; 9:651. [PMID: 39590223 PMCID: PMC11592037 DOI: 10.3390/biomimetics9110651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/07/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024] Open
Abstract
This study explores the enhancement of poly(lactic acid) (PLA) matrix using calcium hydroxyapatite (cHAP) and reduced graphene oxide (rGO) for developing composite scaffolds aimed at bone regeneration applications. The PLA composites were fabricated through solvent evaporation and melt extrusion and characterized by various techniques, including thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and mechanical testing. The incorporation of cHAP and rGO significantly improved the thermal, mechanical, and morphological properties of the PLA matrix. Mechanical testing revealed that adding 10% cHAP and varying amounts of rGO (0.1%, 0.3%, 0.5%) enhanced tensile and compressive strengths, with the highest improvements observed at 0.5% rGO content. Thermal analysis showed increased thermal stability with higher degradation temperatures for the composites. Spectroscopic analyses confirmed the effective integration of cHAP and rGO into the PLA matrix with characteristic peaks of the fillers identified in the composite spectra. In vitro, degraded action tests in phosphate-buffered saline (PBS) at pH 7.4 over 12 months indicated that composites with higher rGO content exhibited lower mass loss and better mechanical stability. Furthermore, finite element analysis (FEA) simulations were performed to validate the experimental results, demonstrating a strong correlation between simulated and experimental compressive strengths. This novel approach demonstrates the potential of PLA/cHAP/rGO composites in creating effective and biocompatible scaffolds for tissue engineering, providing a comprehensive analysis of the synergistic effects of cHAP and rGO on the PLA matrix and offering a promising material for bone regeneration applications.
Collapse
Affiliation(s)
- Francis T. Omigbodun
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK
- The Manufacturing Technology Centre, Coventry CV7 9JU, UK
| | - Bankole I. Oladapo
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK;
| |
Collapse
|
7
|
Omigbodun FT, Osa-Uwagboe N, Udu AG, Oladapo BI. Leveraging Machine Learning for Optimized Mechanical Properties and 3D Printing of PLA/cHAP for Bone Implant. Biomimetics (Basel) 2024; 9:587. [PMID: 39451792 PMCID: PMC11504968 DOI: 10.3390/biomimetics9100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
This study explores the fabrication and characterisation of 3D-printed polylactic acid (PLA) scaffolds reinforced with calcium hydroxyapatite (cHAP) for bone tissue engineering applications. By varying the cHAP content, we aimed to enhance PLA scaffolds' mechanical and thermal properties, making them suitable for load-bearing biomedical applications. The results indicate that increasing cHAP content improves the tensile and compressive strength of the scaffolds, although it also increases brittleness. Notably, incorporating cHAP at 7.5% and 10% significantly enhances thermal stability and mechanical performance, with properties comparable to or exceeding those of human cancellous bone. Furthermore, this study integrates machine learning techniques to predict the mechanical properties of these composites, employing algorithms such as XGBoost and AdaBoost. The models demonstrated high predictive accuracy, with R2 scores of 0.9173 and 0.8772 for compressive and tensile strength, respectively. These findings highlight the potential of using data-driven approaches to optimise material properties autonomously, offering significant implications for developing custom-tailored scaffolds in bone tissue engineering and regenerative medicine. The study underscores the promise of PLA/cHAP composites as viable candidates for advanced biomedical applications, particularly in creating patient-specific implants with improved mechanical and thermal characteristics.
Collapse
Affiliation(s)
- Francis T. Omigbodun
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK; (F.T.O.); (N.O.-U.)
- The Manufacturing Technology Centre, Coventry CV7 9JU, UK
| | - Norman Osa-Uwagboe
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK; (F.T.O.); (N.O.-U.)
- Air Force Research and Development Centre, Nigerian Air Force Base, Kaduna PMB 2104, Nigeria
| | - Amadi Gabriel Udu
- Air Force Research and Development Centre, Nigerian Air Force Base, Kaduna PMB 2104, Nigeria
- School of Engineering, University of Leicester, Leicester LE1 7RH, UK
| | - Bankole I. Oladapo
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
8
|
Strähle UT, Pütz N, Hannig M. A coating machine for coating filaments with bioactive nanomaterials for extrusion 3D printing. Heliyon 2024; 10:e33223. [PMID: 39027443 PMCID: PMC11254607 DOI: 10.1016/j.heliyon.2024.e33223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Extrusion printing based on biocompatible filaments offers a wide variety of targeted medical and dental applications in the area of personalized medicine, if combined with bioactive nanomaterials. However, this requires filament to be coated with bioactive nanomaterial. This study introduces a concept of a machine to coat filament with bioactive nanomaterials and its application. A machine was constructed with modules manufactured using additive manufacturing. A filament spool of polylactide (PLA) or glycol-modified polyethylene terephthalate (PETG) was transported through a copper tube, with the outer surface of the filament heated to the appropriate glass transition temperature to incorporate added nanomaterials such as nano-hydroxyapatite (nHA) or nano-fluorapatite(nFA). Coatings with nHA led to an increase in diameter of around 3 μm, while coatings with nFA increased the diameter by 4 μm. Printing of cubes with a standard extrusion printer platform using PLA or PETG filaments with added nHA or nFA has been successfully carried out. Scanning electron microscope (SEM) images of coated filaments and printed cubes showed an irregular distribution of nHA or nFA, which could be verified by energy dispersive X-ray analysis (EDX). Adding and adjusting bioactive nanomaterials to filament with a coating machine for filament proved to generate printable filaments. With the wide range of possible applications by different nanomaterials it is anticipated that extrusion printing can cover needs for personalized medicine and dentistry.
Collapse
Affiliation(s)
- Ulf Tilman Strähle
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, 66421, Homburg, Saarland, Germany
- Synoptic Dentistry, Saarland University Hospital, 66421, Homburg, Saarland, Germany
| | - Norbert Pütz
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, 66421, Homburg, Saarland, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, 66421, Homburg, Saarland, Germany
| |
Collapse
|
9
|
Peng S, Yang X, Zou W, Chen X, Deng H, Zhang Q, Yan Y. A Bioactive Degradable Composite Bone Cement Based on Calcium Sulfate and Magnesium Polyphosphate. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1861. [PMID: 38673218 PMCID: PMC11051185 DOI: 10.3390/ma17081861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Calcium sulfate bone cement (CSC) is extensively used as a bone repair material due to its ability to self-solidify, degradability, and osteogenic ability. However, the fast degradation, low mechanical strength, and insufficient biological activity limit its application. This study used magnesium polyphosphate (MPP) and constructed a composite bone cement composed of calcium sulfate (CS), MPP, tricalcium silicate (C3S), and plasticizer hydroxypropyl methylcellulose (HPMC). The optimized CS/MPP/C3S composite bone cement has a suitable setting time of approximately 15.0 min, a compressive strength of 26.6 MPa, and an injectability of about 93%. The CS/MPP/C3S composite bone cement has excellent biocompatibility and osteogenic capabilities; our results showed that cell proliferation is up to 114% compared with the control after 5 days. After 14 days, the expression levels of osteogenic-related genes, including Runx2, BMP2, OCN, OPN, and COL-1, are about 1.8, 2.8, 2.5, 2.2, and 2.2 times higher than those of the control, respectively, while the alkaline phosphatase activity is about 1.7 times higher. Therefore, the CS/MPP/C3S composite bone cement overcomes the limitations of CSC and has more effective potential in bone repair.
Collapse
Affiliation(s)
- Suping Peng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xinyue Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wangcai Zou
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaolu Chen
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Hao Deng
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Qiyi Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yonggang Yan
- College of Physics, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Gazo Hanna E, Younes K, Roufayel R, Khazaal M, Fajloun Z. Engineering innovations in medicine and biology: Revolutionizing patient care through mechanical solutions. Heliyon 2024; 10:e26154. [PMID: 38390063 PMCID: PMC10882044 DOI: 10.1016/j.heliyon.2024.e26154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The overlap between mechanical engineering and medicine is expanding more and more over the years. Engineers are now using their expertise to design and create functional biomaterials and are continually collaborating with physicians to improve patient health. In this review, we explore the state of scientific knowledge in the areas of biomaterials, biomechanics, nanomechanics, and computational fluid dynamics (CFD) in relation to the pharmaceutical and medical industry. Focusing on current research and breakthroughs, we provide an overview of how these fields are being used to create new technologies for medical treatments of human patients. Barriers and constraints in these fields, as well as ways to overcome them, are also described in this review. Finally, the potential for future advances in biomaterials to fundamentally change the current approach to medicine and biology is also discussed.
Collapse
Affiliation(s)
- Eddie Gazo Hanna
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Khaled Younes
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Mickael Khazaal
- École Supérieure des Techniques Aéronautiques et de Construction Automobile, ISAE-ESTACA, France
| | - Ziad Fajloun
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, 1300, Tripoli, Lebanon
| |
Collapse
|
11
|
Luo Y, Kim J. Achieving the ideal balance between biological and mechanical requirements in composite bone scaffolds through a voxel-based approach. Comput Methods Biomech Biomed Engin 2024:1-14. [PMID: 38231253 DOI: 10.1080/10255842.2024.2304709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Achieving successful bone regeneration necessitates the design of scaffolds that meet diverse biological and mechanical requirements, often leading to conflicts in the design parameters. A key conflict arises between scaffold porosity and stiffness. Increasing porosity facilitates cell infiltration and nutrient exchange, promoting bone regeneration. However, higher porosity compromises scaffold stiffness, which is crucial for providing structural support in the defective region. Furthermore, appropriate scaffold stiffness is crucial for preventing stress shielding. Conventional geometry-based design methods utilizing single-phase materials have limited flexibility in resolving such conflicts. To address this challenge, we propose a voxel-based method for designing composite scaffolds composed of hydroxyapatite (HA) and polylactic acid (PLA). Our strategy involves first satisfying primary biological requirements by selecting appropriate porosity, pore shape, and size. Subsequently, scaffold stiffness requirements are met by selecting suitable phase materials and tuning their contents. The study demonstrates that the voxel-based approach effectively balances both biological and mechanical requirements in scaffold design. This method addresses the limitations of traditional designs by achieving an optimal balance between porosity and stiffness, which is crucial for scaffold performance in biomedical applications. Moreover, the scaffolds designed using this method can be manufactured using voxel-based 3D printing technology, which is emerging in the field. Future advancements in voxel-based 3D printing technology will further enhance the feasibility and practicality of this approach for bone tissue engineering applications.
Collapse
Affiliation(s)
- Yunhua Luo
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, Canada
| | - Jonghyun Kim
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
12
|
Zhang C, Hayashi K, Ishikawa K. Osseointegration enhancement by controlling dispersion state of carbonate apatite in polylactic acid implant. Colloids Surf B Biointerfaces 2023; 232:113588. [PMID: 37844475 DOI: 10.1016/j.colsurfb.2023.113588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Osteoconductive ceramics (OCs) are often used to endow polylactic acid (PLA) with osseointegration ability. Conventionally, OC powder is dispersed in PLA. However, considering cell attachment to the implant, OCs may be more favorable when they exist in the form of aggregations, such as granules, and are larger than the cells rather than being dispersed like a powder. In this study, to clarify the effects of the dispersion state of OCs on the osseointegration ability, carbonate apatite (CAp), a bone mineral analog that is osteoconductive and bioresorbable, powder-PLA (P-PLA), and CAp granule-PLA (G-PLA) composite implants were fabricated via thermal pressing. The powder and granule sizes of CAp were approximately 1 and 300-600 µm, respectively. G-PLA exhibited a higher water wettability and released calcium and phosphate ions faster than P-PLA. When cylindrical G-PLA, P-PLA, and PLA were implanted in rabbit tibial bone defects, G-PLA promoted bone maturation compared to P-PLA and pure PLA. Furthermore, G-PLA bonded directly to the host bone, whereas P-PLA bonded across the osteoid layers. Consequently, the bone-to-implant contact of G-PLA was 1.8- and 5.6-fold higher than those of P-PLA and PLA, respectively. Furthermore, the adhesive shear strength of G-PLA was 1.9- and 3.0-fold higher than those of P-PLA and PLA, respectively. Thus, G-PLA achieved earlier and stronger osseointegration than P-PLA or PLA. The findings of this study highlight the significance of the state of dispersion of OCs in implants as a novel strategy for material development.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Biomaterials Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Koichiro Hayashi
- Department of Biomaterials Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Kunio Ishikawa
- Department of Biomaterials Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
13
|
Lasota A, Kuczumow A, Gorzelak M, Blicharski T, Niezbecka-Zając J, Turżańska K, Szabelska A, Łobacz M, Wiszumirska K, Wieruszewski M, Jarzębski M, Jabłoński M. Contribution to Knowledge on Bioapatites: Does Mg Level Reflect the Organic Matter and Water Contents of Enamel? Int J Mol Sci 2023; 24:15974. [PMID: 37958956 PMCID: PMC10648067 DOI: 10.3390/ijms242115974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
The matter constituting the enamels of four types of organisms was studied. The variability of the ions was presented in molar units. It was proven that the changes in water contents of the enamel are significantly positively related to changes in Mg; inversely, there is also a strong connection with changes in Ca and P, the main components of bioapatite. The variability in the organic matter has the same strong and positive characteristics and is also coupled with changes in Mg contents. Amelogenins in organic matter, which synthesize enamel rods, likely have a role in adjusting the amount of Mg, thus establishing the amount of organic matter and water in the whole enamel; this adjustment occurs through an unknown mechanism. Ca, P, Mg, and Cl ions, as well as organic matter and water, participate in the main circulation cycle of bioapatites. The selection of variations in the composition of bioapatite occurs only along particular trajectories, where the energy of transformation linearly depends on the following factors: changes in the crystallographic d parameter; the increase in the volume, V, of the crystallographic cell; the momentum transfer, which is indirectly expressed by ΔsinΘ value. To our knowledge, these findings are novel in the literature. The obtained results indicate the different chemical and crystallographic affinities of the enamels of selected animals to the human ones. This is essential when animal bioapatites are transformed into dentistic or medical substitutes for the hard tissues. Moreover, the role of Mg is shown to control the amount of water in the apatite and in detecting organic matter in the enamels.
Collapse
Affiliation(s)
- Agnieszka Lasota
- Department of Maxillary Orthopaedics, Medical University of Lublin, Chodźki 6, 20-093 Lublin, Poland;
| | | | - Mieczysław Gorzelak
- Clinic of Rehabilitation and Orthopedics, Medical University of Lublin, 20-090 Lublin, Poland; (M.G.); (T.B.); (J.N.-Z.); (K.T.); (M.J.)
| | - Tomasz Blicharski
- Clinic of Rehabilitation and Orthopedics, Medical University of Lublin, 20-090 Lublin, Poland; (M.G.); (T.B.); (J.N.-Z.); (K.T.); (M.J.)
| | - Joanna Niezbecka-Zając
- Clinic of Rehabilitation and Orthopedics, Medical University of Lublin, 20-090 Lublin, Poland; (M.G.); (T.B.); (J.N.-Z.); (K.T.); (M.J.)
| | - Karolina Turżańska
- Clinic of Rehabilitation and Orthopedics, Medical University of Lublin, 20-090 Lublin, Poland; (M.G.); (T.B.); (J.N.-Z.); (K.T.); (M.J.)
| | - Anna Szabelska
- Department of Dental Techniques with the Lab of Modern Technologies, Medical University of Lublin, Chodźki 6, 20-093 Lublin, Poland;
| | - Michał Łobacz
- Chair and Department of Oral Surgery, Medical University of Lublin, Chodźki 6, 20-093 Lublin, Poland;
| | - Karolina Wiszumirska
- Institute of Quality Science, Department of Industrial Products and Packaging Quality, Poznan University of Economics and Business, Al. Niepodległosci 10, 61-875 Poznan, Poland;
| | - Marek Wieruszewski
- Department Mechanical Wood Technology, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland;
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznan, Poland
| | - Mirosław Jabłoński
- Clinic of Rehabilitation and Orthopedics, Medical University of Lublin, 20-090 Lublin, Poland; (M.G.); (T.B.); (J.N.-Z.); (K.T.); (M.J.)
| |
Collapse
|
14
|
Li D, Guo X, Du H, Ding W, Li M, Xu Y. Tetracalcium phosphate/polycaprolactone composite scaffold: Mechanical reinforcement, biodegradability regulation and bioactivity induction. J Mech Behav Biomed Mater 2023; 147:106144. [PMID: 37748317 DOI: 10.1016/j.jmbbm.2023.106144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
Polycaprolactone (PCL) is considered a potential biomaterial due to its good biocompatibility, but its slow degradability and insufficient mechanical properties limit its wide application in bone tissue engineering. Tetracalcium phosphate's (TTCP) good degradability and inherent high stiffness are expected to compensate for the aforementioned defects of PCL and endow it with good biological activity. This goal of this study was to obtain bioactive PCL composite scaffolds with tuneable degradation properties and good mechanical strength via selective laser sintering technology (SLS). Composite porous scaffolds with TTCP contents of 0%, 5%, 10%, 15%, 20%, and 25% were prepared, and the experimental results showed that the addition of TTCP significantly improved the mechanical properties of the scaffold. Notably, the tensile strength of the composite scaffold with 20% TTCP content reached 15.2 MPa, which was 2.9 times that of pure PCL, and the best flexural strength was found in the scaffold with 15% TTCP content (4.7 MPa). More importantly, the introduced TTCP not only achieved the effective pH regulation of the soaking solution and the promotion of biodegradation, but also provided the scaffold with good bioactivity and biocompatibility.
Collapse
Affiliation(s)
- Dongying Li
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, 422000, China
| | - Xiaoping Guo
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, 422000, China
| | - Haocheng Du
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, 422000, China
| | - Wenhao Ding
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, 422000, China
| | - Mengqi Li
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, 422000, China.
| | - Yong Xu
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, 422000, China.
| |
Collapse
|
15
|
Hui I, Pasquier E, Solberg A, Agrenius K, Håkansson J, Chinga-Carrasco G. Biocomposites containing poly(lactic acid) and chitosan for 3D printing - Assessment of mechanical, antibacterial and in vitro biodegradability properties. J Mech Behav Biomed Mater 2023; 147:106136. [PMID: 37774439 DOI: 10.1016/j.jmbbm.2023.106136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
New bone repair materials are needed for treatment of trauma- and disease-related skeletal defects as they still represent a major challenge in clinical practice. Additionally, new strategies are required to combat orthopedic device-related infections (ODRI), given the rising incidence of total joint replacement and fracture fixation surgeries in increasingly elderly populations. Recently, the convergence of additive manufacturing (AM) and bone tissue engineering (BTE) has facilitated the development of bone healthcare to achieve personalized three-dimensional (3D) scaffolds. This study focused on the development of a 3D printable bone repair material, based on the biopolymers poly(lactic acid) (PLA) and chitosan. Two different types of PLA and chitosan differing in their molecular weight (MW) were explored. The novel feature of this research was the successful 3D printing using biocomposite filaments composed of PLA and 10 wt% chitosan, with clear chitosan entrapment within the PLA matrix confirmed by Scanning Electron Microscopy (SEM) images. Tensile testing of injection molded samples indicated an increase in stiffness, compared to pure PLA scaffolds, suggesting potential for improved load-bearing characteristics in bone scaffolds. However, the potential benefit of chitosan on the biocomposite stiffness could not be reproduced in compression testing of 3D printed cylinders. The antibacterial assays confirmed antibacterial activity of chitosan when dissolved in acetic acid. The study also verified the biodegradability of the scaffolds, with a process producing an acidic environment that could potentially be neutralized by chitosan. In conclusion, the study indicated the feasibility of the proposed PLA/chitosan biocomposite for 3D printing, demonstrating adequate mechanical strength, antibacterial properties and biodegradability, which could serve as a new material for bone repair.
Collapse
Affiliation(s)
- Isabel Hui
- Swiss Federal Institute of Technology Zurich, Switzerland
| | | | | | - Karin Agrenius
- Unit of Biological Function, Division Materials and Production, RISE Research Institutes of Sweden, Box 857, SE-50115, Borås, Sweden
| | - Joakim Håkansson
- Unit of Biological Function, Division Materials and Production, RISE Research Institutes of Sweden, Box 857, SE-50115, Borås, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-40530, Gothenburg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Gothenburg, Sweden
| | | |
Collapse
|
16
|
Lin H, Zhang L, Zhang Q, Wang Q, Wang X, Yan G. Mechanism and application of 3D-printed degradable bioceramic scaffolds for bone repair. Biomater Sci 2023; 11:7034-7050. [PMID: 37782081 DOI: 10.1039/d3bm01214j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Bioceramics have attracted considerable attention in the field of bone repair because of their excellent osteogenic properties, degradability, and biocompatibility. To resolve issues regarding limited formability, recent studies have introduced 3D printing technology for the fabrication of bioceramic bone repair scaffolds. Nevertheless, the mechanisms by which bioceramics promote bone repair and clinical applications of 3D-printed bioceramic scaffolds remain elusive. This review provides an account of the fabrication methods of 3D-printed degradable bioceramic scaffolds. In addition, the types and characteristics of degradable bioceramics used in clinical and preclinical applications are summarized. We have also highlighted the osteogenic molecular mechanisms in biomaterials with the aim of providing a basis and support for future research on the clinical applications of degradable bioceramic scaffolds. Finally, new developments and potential applications of 3D-printed degradable bioceramic scaffolds are discussed with reference to experimental and theoretical studies.
Collapse
Affiliation(s)
- Hui Lin
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Liyun Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Qiyue Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Xue Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
| | - Guangqi Yan
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
| |
Collapse
|
17
|
Wang W, Liu P, Zhang B, Gui X, Pei X, Song P, Yu X, Zhang Z, Zhou C. Fused Deposition Modeling Printed PLA/Nano β-TCP Composite Bone Tissue Engineering Scaffolds for Promoting Osteogenic Induction Function. Int J Nanomedicine 2023; 18:5815-5830. [PMID: 37869064 PMCID: PMC10590137 DOI: 10.2147/ijn.s416098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose Large bone defects caused by congenital defects, infections, degenerative diseases, trauma, and tumors often require personalized shapes and rapid reconstruction of the bone tissue. Three-dimensional (3D)-printed bone tissue engineering scaffolds exhibit promising application potential. Fused deposition modeling (FDM) technology can flexibly select and prepare printed biomaterials and design and fabricate bionic microstructures to promote personalized large bone defect repair. FDM-3D printing technology was used to prepare polylactic acid (PLA)/nano β-tricalcium phosphate (TCP) composite bone tissue engineering scaffolds in this study. The ability of the bone-tissue-engineered scaffold to repair bone defects was evaluated in vivo and in vitro. Methods PLA/nano-TCP composite bone tissue engineering scaffolds were prepared using FDM-3D printing technology. The characterization data of the scaffolds were obtained using relevant detection methods. The physical and chemical properties, biocompatibility, and in vitro osteogenic capacity of the scaffolds were investigated, and their bone repair capacity was evaluated using an in vivo animal model of rabbit femur bone defects. Results The FDM-printed PLA/nano β-TCP composite scaffolds exhibited good personalized porosity and shape, and their osteogenic ability, biocompatibility, and bone repair ability in vivo were superior to those of pure PLA. The merits of biodegradable PLA and bioactive nano β-TCP ceramics were combined to improve the overall biological performance of the composites. Conclusion The FDM-printed PLA/nano-β-TCP composite scaffold with a ratio of 7:3 exhibited good personalized porosity and shape, as well as good osteogenic ability, biocompatibility, and bone repair ability. This study provides a promising strategy for treating large bone defects.
Collapse
Affiliation(s)
- Wenzhao Wang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Boqing Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xuan Pei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Ping Song
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xia Yu
- Department of Clinical Laboratory, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People’s Republic of China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, People’s Republic of China
- Department of Orthopedics, the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People’s Republic of China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
18
|
Rabadjieva D, Gergulova R, Ruseva K, Bonchev A, Shestakova P, Simeonov M, Vasileva R, Tatchev D, Titorenkova R, Vassileva E. Polycarboxy/Sulfo Betaine-Calcium Phosphate Hybrid Materials with a Remineralization Potential. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6640. [PMID: 37895622 PMCID: PMC10608424 DOI: 10.3390/ma16206640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Biomacromolecules control mineral formation during the biomineralization process, but the effects of the organic components' functionality on the type of mineral phase is still unclear. The biomimetic precipitation of calcium phosphates in a physiological medium containing either polycarboxybetaine (PCB) or polysulfobetaine (PSB) was investigated in this study. Amorphous calcium phosphate (ACP) or a mixture of octacalcium phosphate (OCP) and dicalcium phosphate dihydrate (DCPD) in different ratios were identified depending on the sequence of initial solution mixing and on the type of the negative functional group of the polymer used. The more acidic character of the sulfo group in PSB than the carboxy one in PCB determines the dominance of the acidic solid phases, namely, an acidic amorphous phase or DCPD. In the presence of PCB, the formation of ACP with acicular particles arranged in bundles with the same orientation was observed. A preliminary study on the remineralization potential of the hybrid material with the participation of PSB and a mixture of OCP and DCPD did not show an increase in enamel density, contrary to the materials based on PCB and ACP. Moreover, the latter showed the creation of a newly formed crystal layer similar to that of the underlying enamel. This defines PCB/ACP as a promising material for enamel remineralization.
Collapse
Affiliation(s)
- Diana Rabadjieva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria;
| | - Rumiana Gergulova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria;
| | - Konstans Ruseva
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, James Bourchier Blvd., 1164 Sofia, Bulgaria; (K.R.); (M.S.); (E.V.)
| | - Alexander Bonchev
- Faculty of Dental Medicine, Medical University, 1, G. Sofiiski Str., 1431 Sofia, Bulgaria; (A.B.); (R.V.)
| | - Pavletta Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, BAS, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria;
| | - Marin Simeonov
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, James Bourchier Blvd., 1164 Sofia, Bulgaria; (K.R.); (M.S.); (E.V.)
| | - Radosveta Vasileva
- Faculty of Dental Medicine, Medical University, 1, G. Sofiiski Str., 1431 Sofia, Bulgaria; (A.B.); (R.V.)
| | - Dragomir Tatchev
- Rostislaw Kaischew Institute of Physical Chemistry (IPC), Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria;
| | - Rositsa Titorenkova
- Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 107, 1113 Sofia, Bulgaria;
| | - Elena Vassileva
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, James Bourchier Blvd., 1164 Sofia, Bulgaria; (K.R.); (M.S.); (E.V.)
| |
Collapse
|
19
|
Alonso-Fernández I, Haugen HJ, López-Peña M, González-Cantalapiedra A, Muñoz F. Use of 3D-printed polylactic acid/bioceramic composite scaffolds for bone tissue engineering in preclinical in vivo studies: A systematic review. Acta Biomater 2023; 168:1-21. [PMID: 37454707 DOI: 10.1016/j.actbio.2023.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
3D-printed composite scaffolds have emerged as an alternative to deal with existing limitations when facing bone reconstruction. The aim of the study was to systematically review the feasibility of using PLA/bioceramic composite scaffolds manufactured by 3D-printing technologies as bone grafting materials in preclinical in vivo studies. Electronic databases were searched using specific search terms, and thirteen manuscripts were selected after screening. The synthesis of the scaffolds was carried out using mainly extrusion-based techniques. Likewise, hydroxyapatite was the most used bioceramic for synthesizing composites with a PLA matrix. Among the selected studies, seven were conducted in rats and six in rabbits, but the high variability that exists regarding the experimental process made it difficult to compare them. Regarding the results, PLA/Bioceramic composite scaffolds have shown to be biocompatible and mechanically resistant. Preclinical studies elucidated the ability of the scaffolds to be used as bone grafts, allowing bone growing without adverse reactions. In conclusion, PLA/Bioceramics scaffolds have been demonstrated to be a promising alternative for treating bone defects. Nevertheless, more care should be taken when designing and performing in vivo trials, since the lack of standardization of the processes, which prevents the comparison of the results and reduces the quality of the information. STATEMENT OF SIGNIFICANCE: 3D-printed polylactic acid/bioceramic composite scaffolds have emerged as an alternative to deal with existing limitations when facing bone reconstruction. Since preclinical in vivo studies with animal models represent a mandatory step for clinical translation, the present manuscript analyzed and discussed not only those aspects related to the selection of the bioceramic material, the synthesis of the implants and their characterization. But provides a new approach to understand how the design and perform of clinical trials, as well as the selection of the analysis methods, may affect the obtained results, by covering authors' knowledgebase from veterinary medicine to biomaterial science. Thus, this study aims to systematically review the feasibility of using polylactic acid/bioceramic scaffolds as grafting materials in preclinical trials.
Collapse
Affiliation(s)
- Iván Alonso-Fernández
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain.
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Mónica López-Peña
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| | - Antonio González-Cantalapiedra
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| | - Fernando Muñoz
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| |
Collapse
|
20
|
Hatt LP, Wirth S, Ristaniemi A, Ciric DJ, Thompson K, Eglin D, Stoddart MJ, Armiento AR. Micro-porous PLGA/ β-TCP/TPU scaffolds prepared by solvent-based 3D printing for bone tissue engineering purposes. Regen Biomater 2023; 10:rbad084. [PMID: 37936893 PMCID: PMC10627288 DOI: 10.1093/rb/rbad084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 11/09/2023] Open
Abstract
The 3D printing process of fused deposition modelling is an attractive fabrication approach to create tissue-engineered bone substitutes to regenerate large mandibular bone defects, but often lacks desired surface porosity for enhanced protein adsorption and cell adhesion. Solvent-based printing leads to the spontaneous formation of micropores on the scaffold's surface upon solvent removal, without the need for further post processing. Our aim is to create and characterize porous scaffolds using a new formulation composed of mechanically stable poly(lactic-co-glycol acid) and osteoconductive β-tricalcium phosphate with and without the addition of elastic thermoplastic polyurethane prepared by solvent-based 3D-printing technique. Large-scale regenerative scaffolds can be 3D-printed with adequate fidelity and show porosity at multiple levels analysed via micro-computer tomography, scanning electron microscopy and N2 sorption. Superior mechanical properties compared to a commercially available calcium phosphate ink are demonstrated in compression and screw pull out tests. Biological assessments including cell activity assay and live-dead staining prove the scaffold's cytocompatibility. Osteoconductive properties are demonstrated by performing an osteogenic differentiation assay with primary human bone marrow mesenchymal stromal cells. We propose a versatile fabrication process to create porous 3D-printed scaffolds with adequate mechanical stability and osteoconductivity, both important characteristics for segmental mandibular bone reconstruction.
Collapse
Affiliation(s)
- Luan P Hatt
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- Institute for Biomechanics, ETH Zürich, 8093 Zürich, Switzerland
| | - Sylvie Wirth
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- Institute for Biomechanics, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Daniel J Ciric
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
| | - Keith Thompson
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- UCB Pharma, SL1 3WE Slough, UK
| | - David Eglin
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- Mines Saint-Étienne, Université de Lyon, Université Jean Monnet, INSERM, U1059, 42023 Sainbiose, Saint-Étienne, France
| | - Martin J Stoddart
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
| | - Angela R Armiento
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- UCB Pharma, SL1 3WE Slough, UK
| |
Collapse
|
21
|
Wong SK, Yee MMF, Chin KY, Ima-Nirwana S. A Review of the Application of Natural and Synthetic Scaffolds in Bone Regeneration. J Funct Biomater 2023; 14:jfb14050286. [PMID: 37233395 DOI: 10.3390/jfb14050286] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
The management of bone defects is complicated by the presence of clinical conditions, such as critical-sized defects created by high-energy trauma, tumour resection, infection, and skeletal abnormalities, whereby the bone regeneration capacity is compromised. A bone scaffold is a three-dimensional structure matrix serving as a template to be implanted into the defects to promote vascularisation, growth factor recruitment, osteogenesis, osteoconduction, and mechanical support. This review aims to summarise the types and applications of natural and synthetic scaffolds currently adopted in bone tissue engineering. The merits and caveats of natural and synthetic scaffolds will be discussed. A naturally derived bone scaffold offers a microenvironment closer to in vivo conditions after decellularisation and demineralisation, exhibiting excellent bioactivity, biocompatibility, and osteogenic properties. Meanwhile, an artificially produced bone scaffold allows for scalability and consistency with minimal risk of disease transmission. The combination of different materials to form scaffolds, along with bone cell seeding, biochemical cue incorporation, and bioactive molecule functionalisation, can provide additional or improved scaffold properties, allowing for a faster bone repair rate in bone injuries. This is the direction for future research in the field of bone growth and repair.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Michelle Min Fang Yee
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
22
|
Podgórski R, Wojasiński M, Trepkowska-Mejer E, Ciach T. A simple and fast method for screening production of polymer-ceramic filaments for bone implant printing using commercial fused deposition modelling 3D printers. BIOMATERIALS ADVANCES 2023; 146:213317. [PMID: 36738523 DOI: 10.1016/j.bioadv.2023.213317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/08/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
3D printing is a promising technique for obtaining bone implants. However, 3D printed bone implants, especially those printed using fused deposition modelling, are still in the experimental phase despite decades of work. Research on new materials faces numerous limitations, such as reagents' cost and machines' high prices to produce filaments for 3D printing polymer-ceramic composites for fused deposition modelling. This paper presents a simple, low-cost, and fast method of obtaining polymer-ceramic filaments using apparatus consisting of parts available in a hardware store. The method's versatility for producing the filaments was demonstrated on two different biodegradable polymers - polylactic acid and polycaprolactone - and different concentrations of calcium phosphate - β-tricalcium phosphate - in the composite, up to 50 % by weight. For screening purposes, numerous scaffolds were 3D printed from the obtained filaments on a commercial 3D printer. Structural, mechanical, and biological tests show that the 3D printed scaffolds are suitable for bone implants, as their structure, mechanical, and non-cytotoxic properties are evident. Moreover, the proposed method of composite forming is a simplification of the processes of manufacturing and researching 3D printed materials with potential applications in the regeneration of bone tissue.
Collapse
Affiliation(s)
- Rafał Podgórski
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Department of Biotechnology and Bioprocess Engineering, Laboratory of Biomedical Engineering, Waryńskiego 1, 00-645 Warsaw, Poland.
| | - Michał Wojasiński
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Department of Biotechnology and Bioprocess Engineering, Laboratory of Biomedical Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Edyta Trepkowska-Mejer
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Department of Biotechnology and Bioprocess Engineering, Laboratory of Biomedical Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Tomasz Ciach
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Department of Biotechnology and Bioprocess Engineering, Laboratory of Biomedical Engineering, Waryńskiego 1, 00-645 Warsaw, Poland; Centre for Advanced Materials and Technologies CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
23
|
Mo X, Zhang D, Liu K, Zhao X, Li X, Wang W. Nano-Hydroxyapatite Composite Scaffolds Loaded with Bioactive Factors and Drugs for Bone Tissue Engineering. Int J Mol Sci 2023; 24:ijms24021291. [PMID: 36674810 PMCID: PMC9867487 DOI: 10.3390/ijms24021291] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Nano-hydroxyapatite (n-HAp) is similar to human bone mineral in structure and biochemistry and is, therefore, widely used as bone biomaterial and a drug carrier. Further, n-HAp composite scaffolds have a great potential role in bone regeneration. Loading bioactive factors and drugs onto n-HAp composites has emerged as a promising strategy for bone defect repair in bone tissue engineering. With local delivery of bioactive agents and drugs, biological materials may be provided with the biological activity they lack to improve bone regeneration. This review summarizes classification of n-HAp composites, application of n-HAp composite scaffolds loaded with bioactive factors and drugs in bone tissue engineering and the drug loading methods of n-HAp composite scaffolds, and the research direction of n-HAp composite scaffolds in the future is prospected.
Collapse
Affiliation(s)
- Xiaojing Mo
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Dianjian Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Keda Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Xiaoxi Zhao
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Correspondence: (X.L.); (W.W.)
| | - Wei Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Correspondence: (X.L.); (W.W.)
| |
Collapse
|
24
|
Angili SN, Morovvati MR, Kardan-Halvaei M, Saber-Samandari S, Razmjooee K, Abed AM, Toghraie D, Khandan A. Fabrication and finite element simulation of antibacterial 3D printed Poly L-lactic acid scaffolds coated with alginate/magnesium oxide for bone tissue regeneration. Int J Biol Macromol 2022; 224:1152-1165. [DOI: 10.1016/j.ijbiomac.2022.10.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022]
|
25
|
Design Strategies and Biomimetic Approaches for Calcium Phosphate Scaffolds in Bone Tissue Regeneration. Biomimetics (Basel) 2022; 7:biomimetics7030112. [PMID: 35997432 PMCID: PMC9397031 DOI: 10.3390/biomimetics7030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Bone is a complex biologic tissue, which is extremely relevant for various physiological functions, in addition to movement, organ protection, and weight bearing. The repair of critical size bone defects is a still unmet clinical need, and over the past decades, material scientists have been expending efforts to find effective technological solutions, based on the use of scaffolds. In this context, biomimetics which is intended as the ability of a scaffold to reproduce compositional and structural features of the host tissues, is increasingly considered as a guide for this purpose. However, the achievement of implants that mimic the very complex bone composition, multi-scale structure, and mechanics is still an open challenge. Indeed, despite the fact that calcium phosphates are widely recognized as elective biomaterials to fabricate regenerative bone scaffolds, their processing into 3D devices with suitable cell-instructing features is still prevented by insurmountable drawbacks. With respect to biomaterials science, new approaches maybe conceived to gain ground and promise for a substantial leap forward in this field. The present review provides an overview of physicochemical and structural features of bone tissue that are responsible for its biologic behavior. Moreover, relevant and recent technological approaches, also inspired by natural processes and structures, are described, which can be considered as a leverage for future development of next generation bioactive medical devices.
Collapse
|
26
|
Gui X, Peng W, Xu X, Su Z, Liu G, Zhou Z, Liu M, Li Z, Song G, Zhou C, Kong Q. Synthesis and application of nanometer hydroxyapatite in biomedicine. NANOTECHNOLOGY REVIEWS 2022. [DOI: 10.1515/ntrev-2022-0127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Nano-hydroxyapatite (nano-HA) has been widely studied as a promising biomaterial because of its potential mechanical and biological properties. In this article, different synthesis methods for nano-HA were summarized. Key factors for the synthesis of nano-HA, including reactant concentration, effects of temperature, PH, additives, aging time, and sintering, were separately investigated. The biological performances of the nano-HA depend strongly on its structures, morphology, and crystallite sizes. Nano-HA with different morphologies may cause different biological effects, such as protein adsorption, cell viability and proliferation, angiogenesis, and vascularization. Recent research progress with respect to the biological functions of the nano-HA in some specific biological applications are summarized and the future development of nano-sized hydroxyapatite is prospected.
Collapse
Affiliation(s)
- Xingyu Gui
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
| | - Wei Peng
- West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu 610041 , China
| | - Xiujuan Xu
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
| | - Zixuan Su
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
| | - Gang Liu
- Department of Orthopedics, West China Hospital, Sichuan University , 610041, Chengdu , China
| | - Zhigang Zhou
- Department of Orthopedics, West China Hospital, Sichuan University , 610041, Chengdu , China
| | - Ming Liu
- Department of Orthopedics, West China Hospital, Sichuan University , 610041, Chengdu , China
| | - Zhao Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu 610041 , China
| | - Geyang Song
- West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu 610041 , China
| | - Changchun Zhou
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
| | - Qingquan Kong
- Department of Orthopedics, West China Hospital, Sichuan University , 610041, Chengdu , China
| |
Collapse
|