1
|
Zuin VG, Ramin LZ, Segatto ML, Stahl AM, Zanotti K, Forim MR, da Silva MFDGF, Fernandes JB. To separate or not to separate: what is necessary and enough for a green and sustainable extraction of bioactive compounds from Brazilian citrus waste. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2020-0706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Increasing demands to obtain chemicals via greener and more sustainable materials and processes introduces concepts that should be considered and applied from lab to larger scales. Obtaining bioactive chemicals from agro-industrial non-food biomass waste can combine benign techniques and bio-circular economy to reach this goal. After extraction, evaluating profitability and environmental impacts to decide whether separation – and to what extent – is necessary or not is indispensable. This could be integrated into an approach known as sufficiency, as an important criterion for sustainability. From this perspective, Brazil’s annual generation of 8 million tons of orange waste is relevant, since citrus waste has large amounts of high-value compounds, such as pectin, d-limonene and flavonoids. This case study aimed at developing and comparing green and sustainable analytical methods to obtain flavonoids from orange peel. Homogenizer, ultrasound and microwave-assisted extractions were employed using chemometric tools, considering time, sample/solvent ratio, temperature and ethanol concentration as variables to obtain extracts containing hesperidin, naringenin, hesperetin and nobiletin. The bioactive flavonoids were determined by high-performance liquid chromatography (HPLC-UV). Microwave extraction was the most efficient method for obtaining the majority of flavonoids studied, six times more for hesperidin. Moreover, orange waste from different farming models showed diverse chemical profiles showing the importance of this alternative in natural product resources.
Collapse
Affiliation(s)
- Vânia G. Zuin
- Department of Chemistry , Federal University of São Carlos , Rod. Washington Luís, km 235 , São Carlos , 13565-905, Brazil
- Green Chemistry Centre of Excellence , University of York , North Yorkshire YO10 5DD, UK
- Institute of Sustainable and Environmental Chemistry , Leuphana University , Universitätsallee 1 , 21335, Lüneburg , Germany
| | - Luize Z. Ramin
- Department of Chemistry , Federal University of São Carlos , Rod. Washington Luís, km 235 , São Carlos , 13565-905, Brazil
| | - Mateus L. Segatto
- Department of Chemistry , Federal University of São Carlos , Rod. Washington Luís, km 235 , São Carlos , 13565-905, Brazil
| | - Aylon M. Stahl
- Department of Chemistry , Federal University of São Carlos , Rod. Washington Luís, km 235 , São Carlos , 13565-905, Brazil
| | - Karine Zanotti
- Department of Chemistry , Federal University of São Carlos , Rod. Washington Luís, km 235 , São Carlos , 13565-905, Brazil
| | - Moacir R. Forim
- Department of Chemistry , Federal University of São Carlos , Rod. Washington Luís, km 235 , São Carlos , 13565-905, Brazil
| | | | - João Batista Fernandes
- Department of Chemistry , Federal University of São Carlos , Rod. Washington Luís, km 235 , São Carlos , 13565-905, Brazil
| |
Collapse
|
2
|
Zuin VG, Segatto ML, Zanotti K. Towards a green and sustainable fruit waste valorisation model in Brazil: optimisation of homogenizer-assisted extraction of bioactive compounds from mango waste using a response surface methodology. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-1001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractFood waste valorisation is currently at the core of discussions and development of future economic models which, allied to the application of green and sustainable technologies, offers a viable alternative to shift industrial practices towards a circular bioeconomy. The feasibility and technological possibilities based on an integrated mango waste biorefinery concept, focusing on the extraction of bioactive compounds, are discussed in this paper. Additionally, a statistically robust methodology is presented as a green approach to optimise the variables of a sustainable, low time and energy consumption extraction technique (homogenizer-assisted extraction). Maximum concentrations of the bioactive compounds were obtained in similar values of parameters ethanol/water concentration (67.73 and 70.11 %), sample/solvent ratio (29.33 and 28.17 %) and time (4.47 and 5.00 min) for mangiferin (354.4 mg/kg DW) and hyperoside (258.7 mg/kg DW), respectively. These results demonstrated the efficiency of the proposed green and sustainable method to obtain bioactive compounds from a very common and significant tropical fruit waste in Brazil, based on an integrated mango biorefinery concept.
Collapse
Affiliation(s)
- Vânia G. Zuin
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís (SP-310), km 235, 13565-905, São Carlos, SP, Brazil
- Green Chemistry Centre of Excellence, University of York, Heslington, York, YO10 5DD, UK, Tel.: +55 16 33518206, e-mail:
| | - Mateus L. Segatto
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís (SP-310), km 235, 13565-905, São Carlos, SP, Brazil
| | - Karine Zanotti
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís (SP-310), km 235, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
3
|
Zuin VG, Budarin VL, De Bruyn M, Shuttleworth PS, Hunt AJ, Pluciennik C, Borisova A, Dodson J, Parker HL, Clark JH. Polysaccharide-derived mesoporous materials (Starbon®) for sustainable separation of complex mixtures. Faraday Discuss 2019; 202:451-464. [PMID: 28660921 DOI: 10.1039/c7fd00056a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The recovery and separation of high value and low volume extractives are a considerable challenge for the commercial realisation of zero-waste biorefineries. Using solid-phase extractions (SPE) based on sustainable sorbents is a promising method to enable efficient, green and selective separation of these complex extractive mixtures. Mesoporous carbonaceous solids derived from renewable polysaccharides are ideal stationary phases due to their tuneable functionality and surface structure. In this study, the structure-separation relationships of thirteen polysaccharide-derived mesoporous materials and two modified types as sorbents for ten naturally-occurring bioactive phenolic compounds were investigated. For the first time, a comprehensive statistical analysis of the key molecular and surface properties influencing the recovery of these species was carried out. The obtained results show the possibility of developing tailored materials for purification, separation or extraction, depending on the molecular composition of the analyte. The wide versatility and application span of these polysaccharide-derived mesoporous materials offer new sustainable and inexpensive alternatives to traditional silica-based stationary phases.
Collapse
Affiliation(s)
- Vânia G Zuin
- Department of Chemistry, Federal University of Sao Carlos, Rod. Washington Luís, km 235, Sao Carlos, SP, Sao Paulo, Brazil13.565-905.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Zuin VG, Ramin LZ. Green and Sustainable Separation of Natural Products from Agro-Industrial Waste: Challenges, Potentialities, and Perspectives on Emerging Approaches. Top Curr Chem (Cham) 2018; 376:3. [PMID: 29344754 PMCID: PMC5772139 DOI: 10.1007/s41061-017-0182-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/26/2017] [Indexed: 02/07/2023]
Abstract
New generations of biorefinery combine innovative biomass waste resources from different origins, chemical extraction and/or synthesis of biomaterials, biofuels, and bioenergy via green and sustainable processes. From the very beginning, identifying and evaluating all potentially high value-added chemicals that could be removed from available renewable feedstocks requires robust, efficient, selective, reproducible, and benign analytical approaches. With this in mind, green and sustainable separation of natural products from agro-industrial waste is clearly attractive considering both socio-environmental and economic aspects. In this paper, the concepts of green and sustainable separation of natural products will be discussed, highlighting the main studies conducted on this topic over the last 10 years. The principal analytical techniques (such as solvent, microwave, ultrasound, and supercritical treatments), by-products (e.g., citrus, coffee, corn, and sugarcane waste) and target compounds (polyphenols, proteins, essential oils, etc.) will be presented, including the emerging green and sustainable separation approaches towards bioeconomy and circular economy contexts.
Collapse
Affiliation(s)
- Vânia G Zuin
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, 13565-905, Brazil.
- Green Chemistry Centre of Excellence, University of York, North Yorkshire, YO10 5DD, UK.
| | - Luize Z Ramin
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, 13565-905, Brazil
| |
Collapse
|