1
|
Alcalde B, Elias G, Kolev SD, Méndez JA, Díez S, Oliver-Ortega H, Anticó E, Fontàs C. A Comprehensive Study on the Effect of Plasticizers on the Characteristics of Polymer Inclusion Membranes (PIMs): Exploring Butyl Stearate as a Promising Alternative. MEMBRANES 2024; 14:19. [PMID: 38248709 PMCID: PMC10818669 DOI: 10.3390/membranes14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
This study investigated the influence of various plasticizers commonly used in the manufacture of polymer inclusion membranes (PIMs), such as 2-nitrophenyl octyl ether (NPOE), phthalates, adipates, and sebacates on the mechanical, thermal, and transport properties of membranes. Additionally, butyl stearate (BTS), chosen for its non-toxic nature compared to phthalates and its cost-effectiveness relative to adipates and sebacates, was evaluated as a plasticizer in PIMs for the first time. All plasticizers were incorporated in PIMs made of either cellulose triacetate (CTA) or poly(vinyl chloride) (PVC) as the base polymers and the task-specific ionic liquid trioctylmethylammonium thiosalicylate (TOMATS) as the carrier. The plasticizers were found to significantly affect the characteristics of membrane hydrophilicity, mechanical flexibility, and thermal stability. Transport experiments using Hg(II) as a model target ion revealed that, for CTA-based PIMs, the plasticizer did not significantly affect transport efficiency. However, for PVC-based PIMs, BTS exhibited better efficiency when compared to NPOE. These findings highlight the potential of BTS as an attractive alternative to currently used plasticizers in PVC-based PIM formulations.
Collapse
Affiliation(s)
- Berta Alcalde
- Chemistry Department, University of Girona, C/Maria Aurèlia Capmany, 69, 17003 Girona, Spain; (B.A.); (G.E.); (E.A.)
| | - Gemma Elias
- Chemistry Department, University of Girona, C/Maria Aurèlia Capmany, 69, 17003 Girona, Spain; (B.A.); (G.E.); (E.A.)
| | - Spas D. Kolev
- School of Chemistry, The University of Melbourne, Melbourne, VIC 3010, Australia;
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - José Alberto Méndez
- Chemical Engineering Department, University of Girona, Edifici PI, 17003 Girona, Spain;
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona, 18-26, 08034 Barcelona, Spain;
| | - Helena Oliver-Ortega
- Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, C/Colom 1, 08222 Terrassa, Spain;
- Institut d’Investigació Tèxtil i Cooperació Industrial de Terrassa (INTEXTER), C/Colom 15, 08222 Terrassa, Spain
| | - Enriqueta Anticó
- Chemistry Department, University of Girona, C/Maria Aurèlia Capmany, 69, 17003 Girona, Spain; (B.A.); (G.E.); (E.A.)
| | - Clàudia Fontàs
- Chemistry Department, University of Girona, C/Maria Aurèlia Capmany, 69, 17003 Girona, Spain; (B.A.); (G.E.); (E.A.)
| |
Collapse
|
2
|
Ncib S, Chibani A, Barhoumi A, Larchet C, Dammak L, Elaloui E, Bouguerra W. Separation of copper and nickel from synthetic wastewater by polymer inclusion membrane containing di(2-ethylhexyl)phosphoric acid. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04634-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Kaczorowska MA. The Use of Polymer Inclusion Membranes for the Removal of Metal Ions from Aqueous Solutions-The Latest Achievements and Potential Industrial Applications: A Review. MEMBRANES 2022; 12:1135. [PMID: 36422127 PMCID: PMC9695490 DOI: 10.3390/membranes12111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 05/12/2023]
Abstract
The growing demand for environmentally friendly and economical methods of removing toxic metal ions from polluted waters and for the recovery of valuable noble metal ions from various types of waste, which are often treated as their secondary source, has resulted in increased interest in techniques based on the utilization of polymer inclusion membranes (PIMs). PIMs are characterized by many advantages (e.g., the possibility of simultaneous extraction and back extraction, excellent stability and high reusability), and can be adapted to the properties of the removed target analyte by appropriate selection of carriers, polymers and plasticizers used for their formulation. However, the selectivity and efficiency of the membrane process depends on many factors (e.g., membrane composition, nature of removed metal ions, composition of aqueous feed solution, etc.), and new membranes are systematically designed to improve these parameters. Numerous studies aimed at improving PIM technology may contribute to the wider use of these methods in the future on an industrial scale, e.g., in wastewater treatment. This review describes the latest achievements related to the removal of various metal ions by PIMs over the past 3 years, with particular emphasis on solutions with potential industrial application.
Collapse
Affiliation(s)
- Małgorzata A Kaczorowska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85326 Bydgoszcz, Poland
| |
Collapse
|
4
|
Regmi C, Ashtiani S, Průša F, Friess K. Synergistic effect of hybridized TNT@GO fillers in CTA-based mixed matrix membranes for selective CO2/CH4 separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Soo JAL, Makhtar MMZ, Shoparwe NF, Otitoju TA, Mohamad M, Tan LS, Li S. Characterization and Kinetic Studies of Poly(vinylidene fluoride-co-hexafluoropropylene) Polymer Inclusion Membrane for the Malachite Green Extraction. MEMBRANES 2021; 11:676. [PMID: 34564493 PMCID: PMC8467911 DOI: 10.3390/membranes11090676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022]
Abstract
Textile industry effluent contains a high amount of toxic colorants. These dyes are carcinogenic and threats to the environment and living beings. In this study, poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) was used as the based polymer for PIMs with bis-(2-ethylhexyl) phosphate (B2EHP) and dioctyl phthalate (DOP) as the carrier and plasticizer. The fabricated PIMs were employed to extract the cation dye (Malachite Green; MG) from the feeding phase. PIMs were also characterized by scanning electron microscopy (SEM), atomic force microscope (AFM), contact angle, water uptake, Fourier-transform infrared spectroscopy (FTIR) and ions exchange capacity. The performance of the PIMs was investigated under various conditions such as percentage of carrier and initial dye concentration. With permeability and flux values of 0.1188 cm/min and 1.1913 mg cm/min, PIM produced with 18% w/w PVDF-co-HFP, 21% w/w B2EHP, 1% w/w DOP and 40% w/w THF and was able to achieve more than 97% of MG extraction. The experimental data were then fitted with a pseudo-second-order (PSO) model, and the calculated R2 value was ~0.99. This shows that the data has a good fit with the PSO model. PIM is a potential alternative technology in textile industry effluent treatment; however, the right formulation is crucial for developing a highly efficient membrane.
Collapse
Affiliation(s)
- Jillin Ai Lam Soo
- Faculty of Bioengineering and Technology, Jeli Campus, Universiti Malaysia Kelantan, Jeli Kelantan 17600, Malaysia; (J.A.L.S.); (T.A.O.); (M.M.)
- Malaysia–Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia;
| | - Muaz Mohd Zaini Makhtar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| | - Noor Fazliani Shoparwe
- Faculty of Bioengineering and Technology, Jeli Campus, Universiti Malaysia Kelantan, Jeli Kelantan 17600, Malaysia; (J.A.L.S.); (T.A.O.); (M.M.)
| | - Tunmise Ayode Otitoju
- Faculty of Bioengineering and Technology, Jeli Campus, Universiti Malaysia Kelantan, Jeli Kelantan 17600, Malaysia; (J.A.L.S.); (T.A.O.); (M.M.)
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Mardawani Mohamad
- Faculty of Bioengineering and Technology, Jeli Campus, Universiti Malaysia Kelantan, Jeli Kelantan 17600, Malaysia; (J.A.L.S.); (T.A.O.); (M.M.)
| | - Lian See Tan
- Malaysia–Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia;
| | - Sanxi Li
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China;
| |
Collapse
|
6
|
Regmi C, Ashtiani S, Sofer Z, Hrdlička Z, Průša F, Vopička O, Friess K. CeO 2-Blended Cellulose Triacetate Mixed-Matrix Membranes for Selective CO 2 Separation. MEMBRANES 2021; 11:632. [PMID: 34436395 PMCID: PMC8400081 DOI: 10.3390/membranes11080632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/04/2021] [Accepted: 08/15/2021] [Indexed: 01/24/2023]
Abstract
Due to the high affinity of ceria (CeO2) towards carbon dioxide (CO2) and the high thermal and mechanical properties of cellulose triacetate (CTA) polymer, mixed-matrix CTA-CeO2 membranes were fabricated. A facile solution-casting method was used for the fabrication process. CeO2 nanoparticles at concentrations of 0.32, 0.64 and 0.9 wt.% were incorporated into the CTA matrix. The physico-chemical properties of the membranes were evaluated by SEM-EDS, XRD, FTIR, TGA, DSC and strain-stress analysis. Gas sorption and permeation affinity were evaluated using different single gases. The CTA-CeO2 (0.64) membrane matrix showed a high affinity towards CO2 sorption. Almost complete saturation of CeO2 nanoparticles with CO2 was observed, even at low pressure. Embedding CeO2 nanoparticles led to increased gas permeability compared to pristine CTA. The highest gas permeabilities were achieved with 0.64 wt.%, with a threefold increase in CO2 permeability as compared to pristine CTA membranes. Unwanted aggregation of the filler nanoparticles was observed at a 0.9 wt.% concentration of CeO2 and was reflected in decreased gas permeability compared to lower filler loadings with homogenous filler distributions. The determined gas selectivity was in the order CO2/CH4 > CO2/N2 > O2/N2 > H2/CO2 and suggests the potential of CTA-CeO2 membranes for CO2 separation in flue/biogas applications.
Collapse
Affiliation(s)
- Chhabilal Regmi
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic; (S.A.); (O.V.)
| | - Saeed Ashtiani
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic; (S.A.); (O.V.)
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic;
| | - Zdeněk Hrdlička
- Department of Polymers, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic;
| | - Filip Průša
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic;
| | - Ondřej Vopička
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic; (S.A.); (O.V.)
| | - Karel Friess
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic; (S.A.); (O.V.)
| |
Collapse
|
7
|
Calixresorcin[4]arene-Mediated Transport of Pb(II) Ions through Polymer Inclusion Membrane. MEMBRANES 2021; 11:membranes11040285. [PMID: 33924662 PMCID: PMC8069765 DOI: 10.3390/membranes11040285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022]
Abstract
A facilitated transport of Pb(II) through polymer inclusion membrane (PIM) containing 1,8,15,22-tetra(1-heptyl)-calixresorcin[4]arene and its tetra- and octasubstituted derivatives containing phosphoryl, thiophosphoryl or ester groups as an ion carrier was investigated. The efficiency of Pb(II) removal from aqueous nitrate solutions was considered as a function of the composition of membrane (effect of polymer, plasticizer, and carrier), feed (effect of initial metal concentration and presence of other metal ions) and stripping phases, and temperature of the process conducting. Two kinetic models were applied for the transport description. The highest Pb(II) ions removal efficiency was obtained for the membrane with tetrathiophosphorylated heptyl-calixresorcin[4]arene as an ion carrier. The activation energy value, found from Eyring plot to be equal 38.7 ± 1.3 kJ/mol, suggests that the transport process is controllable both by diffusion and chemical reaction. The competitive transport of Pb(II) over Zn(II), Cd(II), and Cr(III) ions across PIMs under the optimal conditions was also performed. It was found that the Cr(III) ions’ presence in the feed phase disturb effective re-extraction of Pb(II) ions from membrane to stripping phase. Better stability of PIM-type than SLM-type membrane was found.
Collapse
|