1
|
Qiu L, Liu H, He C, He S, Liu L, Zhang Q. In Situ Self-Assembly of Nitrogen-Doped 3D Flower-like Hierarchical Porous Carbon and Its Application for Supercapacitors. Molecules 2024; 29:2532. [PMID: 38893408 PMCID: PMC11173510 DOI: 10.3390/molecules29112532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The hierarchical porous carbon-based materials derived from biomass are beneficial for the enhancement of electrochemical performances in supercapacitors. Herein, we report the fabrication of nitrogen-doped 3D flower-like hierarchical porous carbon (NPC) assembled by nanosheets using a mixture of urea, ZnCl2, and starch via a low-temperature hydrothermal reaction and high-temperature carbonization process. As a consequence, the optimized mass ratio for the mixture is 2:2:2 and the temperature is 700 °C. The NPC structures are capable of electron transport and ion diffusion owing to their high specific surface area (1498.4 m2 g-1) and rich heteroatoms. Thereby, the resultant NPC electrodes display excellent capacitive performance, with a high specific capacitance of 249.7 F g-1 at 1.0 A g-1 and good cycling stability. Remarkably, this implies a superior energy density of 42.98 Wh kg-1 with a power density of 7500 W kg-1 in organic electrolyte for the symmetrical supercapacitor. This result verifies the good performance of as-synthesized carbon materials in capacitive energy storage applications, which is inseparable from the hierarchical porous features of the materials.
Collapse
Affiliation(s)
- Liqing Qiu
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China; (L.Q.); (H.L.)
- Department of Chemistry and Chemical Engineering, Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
| | - Hangzhong Liu
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China; (L.Q.); (H.L.)
- Department of Chemistry and Chemical Engineering, Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
| | - Chenweijia He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China;
| | - Shuijian He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China;
| | - Li Liu
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China;
| | - Qian Zhang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China; (L.Q.); (H.L.)
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China;
| |
Collapse
|
2
|
Sandwich-structured polypyrrole layer/KCl-polyacrylamide-gelatin hydrogel/polypyrrole layer as all-in-one polymer self-healing supercapacitor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Xie Y. Enhancement effect of silver nanoparticles decorated titania nanotube array acting as active SERS substrate. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1984533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yibing Xie
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Xie Y, Mu Y. Interface Mo-N coordination bonding MoSxNy@Polyaniline for stable structured supercapacitor electrode. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138953] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Xie Y. Photoelectrochemical performance of tubewall‐separated titanium dioxide nanotube array photoelectrode. ASIA-PAC J CHEM ENG 2021. [DOI: 10.1002/apj.2688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yibing Xie
- School of Chemistry and Chemical Engineering Southeast University Nanjing China
| |
Collapse
|
6
|
Xie Y. Fabrication of Highly Ordered Ag/TiO2 Nanopore Array as a Self-Cleaning and Recycling SERS Substrate. Aust J Chem 2021. [DOI: 10.1071/ch21142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Silver nanoparticles deposited on a titania nanopore array (Ag/TiO2 NPA) has been designed as a surface-enhanced Raman scattering (SERS) substrate for sensitive and recycling application of organic molecule detection. A TiO2 NPA was fabricated by a surface oxidization reaction of a titanium sheet by a double anodization process. A Ag/TiO2 NPA was then formed by depositing silver nanoparticles onto the TiO2 NPA by a cycling chemical reduction deposition process. The Ag/TiO2 NPA has a uniform mono-layer dispersion of Ag nanoparticles with a size of 30–50 nm on TiO2 nanopores with a diameter of 100–110 nm. The Ag/TiO2 NPA SERS substrate could facilitate interfacial adsorption of Rhodamine 6G (R6G), which achieves a sensitive detection limit of 10−8 M R6G through SERS spectrum measurement. The Ag/TiO2 NPA SERS substrate achieves an analytical enhancement factor value of 2.6 × 105. The Ag/TiO2 NRA could promote the UV light-excited photocatalytic degradation reaction of R6G adsorbed on its surface which gives rise to a refreshed Ag/TiO2 NRA under UV irradiation for 60 min and accordingly behave as a self-cleaning and recycling SERS substrate. The Ag/TiO2 NPA exhibits a much higher R6G degradation reaction rate constant (0.05764 min−1) than the TiO2 NPA (0.02600 min−1), indicating its superior photocatalytic activity and self-cleaning activity. The refreshed Ag/TiO2 NPA was able to be recycled for the Raman detection of R6G, maintaining a high stability, reproducibility, and cyclability. The highly ordered Ag/TiO2 NPA with well controlled Ag nanoparticle dispersion and TiO2 nanopore shape could act as a suitable SERS substrate for recycling and self-cleaning application for stable and sensitive molecule detection.
Collapse
|