1
|
Kučera I, Sedláček V. Flavin-dependent enzymatic and photochemical interconversions between phenylarsonic and phenylarsonous acids. Biometals 2025:10.1007/s10534-025-00685-7. [PMID: 40240666 DOI: 10.1007/s10534-025-00685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
Phenylarsonic acid is the parent compound of a group of derivatives that occur as anthropogenic environmental contaminants in both less toxic As(V) and much more toxic As(III) redox states. To elucidate the mechanisms underlying their enzymatic redox conversions, the activities of two flavin reductases, ArsH and FerA, from the soil bacterium Paracoccus denitrificans were compared. The stopped-flow data demonstrated that PhAs(V) oxidized dihydroflavin mononucleotide bound to ArsH, but not to FerA. This result proves that ArsH has some substrate specificity for organoarsenic compounds. Under aerobic conditions, both enzymes accelerated the oxidation of PhAs(III) in a catalase-sensitive manner, indicating that hydrogen peroxide acts as an intermediate. H2O2 was shown to react with PhAs(III) in a bimolecular (1:1) irreversible reaction. When exposed to blue light, flavin alone mediated rapid oxidation of PhAs(III) by O2. Photooxidation by flavin acted in concert with chemical oxidation by transiently accumulating H2O2. The described processes may be relevant in the context of arsenic ecotoxicology and remediation.
Collapse
Affiliation(s)
- Igor Kučera
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, 61137, Brno, Czech Republic.
| | - Vojtěch Sedláček
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, 61137, Brno, Czech Republic
| |
Collapse
|
2
|
Seo D, Kwon S, Yoon G, Son T, Won C, Singh N, Kim D, Baek Y. Expanding the chemical space of flavins with pentacyclic architecture. Nat Commun 2025; 16:3561. [PMID: 40234447 PMCID: PMC12000593 DOI: 10.1038/s41467-025-58957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025] Open
Abstract
Inspired by the prominent redox and optical properties of natural flavins, synthetic flavins have found broad applications in organic, photochemical, and biochemical research. Tailoring these properties of flavins, however, remains a challenge. In this work, we present three pentacyclic flavins (C-PF, O-PF, and S-PF) that leverage a strategic molecular design to modify the flavin's electronic structure. Notably, the oxygen- and sulfur-linked pentacyclic flavins (O-PF and S-PF) exhibit deep-red and NIR emission, respectively, driven by enhanced π-conjugation, substituent effects, and charge separation upon excitation. These heteroatom-incorporated pentacyclic flavins exhibit unusual quasi-reversible oxidation, expanding both optical and redox limits of synthetic flavins. Comprehensive spectroscopic, structural, and computational analyses reveal how heteroatom incorporation within this five-ring-fused system unlocks redox and optical properties of flavin-derived chromophores.
Collapse
Affiliation(s)
- Dayeong Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seongyeon Kwon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon, Republic of Korea
| | - Gahye Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Taeil Son
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Changhyeon Won
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Neetu Singh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon, Republic of Korea
| | - Yunjung Baek
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Heckmann CM, Heyes DJ, Pabst M, Otten E, Scrutton NS, Paul CE. Asymmetric Enantio-complementary Synthesis of Thioethers via Ene-Reductase-Catalyzed C-C Bond Formation. J Am Chem Soc 2025. [PMID: 40172483 DOI: 10.1021/jacs.5c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Enzymes are attractive catalysts due to their high chemo-, regio-, and enantioselectivity. In recent years, the application of enzymes in organic synthesis has expanded dramatically, especially for the synthesis of chiral alcohols and amines, two very important functional groups found in many active pharmaceutical ingredients (APIs). Indeed, many elegant routes employing such compounds have been described by industry. Yet, for the synthesis of chiral thiols and thioethers, likewise found in APIs albeit less ubiquitous, only very few biocatalytic syntheses have been reported, and stereocontrol has proved challenging. Here, we apply ene-reductases (EREDs), whose ability to initiate and control chemically challenging radical chemistries has recently emerged, to the synthesis of chiral thioethers from α-bromoacetophenones and pro-chiral vinyl sulfides, without requiring light. Depending on the choice of ERED either enantiomer of the product could be accessed. The highest conversion and selectivity were achieved with GluER T36A using fluorinated substrates, reaching up to 82% conversion and >99.5% ee. With α-bromoacetophenone and α-(methylthio)styrene, the reaction could be performed on a 100 mg scale, affording the product in a 46% isolated yield with a 93% ee. Finally, mechanistic studies were carried out using stopped-flow spectroscopy and protein mass spectrometry, providing insight into the preference of the enzyme for the intermolecular reaction. This work paves the way for new routes for the synthesis of thioether-containing compounds.
Collapse
Affiliation(s)
- Christian M Heckmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Derren J Heyes
- Manchester Institute of Biotechnology and Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Edwin Otten
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, Groningen 9747AG, The Netherlands
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629HZ, The Netherlands
| |
Collapse
|
4
|
Fukuda T, Miyake H, Iida H. Flavin-Catalyzed Chemoselective Aerobic Oxygenation of Heteroarylmethanes to Ketones. Org Lett 2025; 27:2885-2890. [PMID: 40094226 DOI: 10.1021/acs.orglett.5c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
A novel flavin-catalyzed chemoselective aerobic oxygenation of arylheteroarylmethanes to ketones has been developed under metal-free and mild conditions. This catalytic system employs a cationic flavin to activate sp3 C-H bonds through the formation of pyridinium-flavin adducts, enabling precise proton and electron transfer for oxygen atom insertion. As a result, this method exhibits high chemoselectivity, effectively distinguishing between arylheteroarylmethanes and diarylmethanes.
Collapse
Affiliation(s)
- Tatsuki Fukuda
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Hazuki Miyake
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| |
Collapse
|
5
|
An DL, Xu C, Wang M, Shu Q, Zhou X. Bio-Inspired Consecutive Photocatalyzed C-H Nitration of Arenes. J Org Chem 2025; 90:4313-4324. [PMID: 40105320 DOI: 10.1021/acs.joc.5c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Concerned with traditional nitration methods requiring high temperatures, strong acids, or oxidizing agents, we developed an acid-free, selective photocatalytic nitration method using riboflavin tetraacetate and Fe(NO3)3·9H2O under visible light. This method efficiently nitrates various arenes and bioactive molecules with high selectivity and functional group tolerance, offering a sustainable alternative to traditional nitration techniques.
Collapse
Affiliation(s)
- Da-Lie An
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Xu
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Manman Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qinghai Shu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xukai Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
de Abreu RMF, Ehlers P, Langer P. Synthesis of benzo[ f]quinazoline-1,3(2 H,4 H)-diones. Beilstein J Org Chem 2024; 20:2708-2719. [PMID: 39498449 PMCID: PMC11533120 DOI: 10.3762/bjoc.20.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/09/2024] [Indexed: 11/07/2024] Open
Abstract
We report the synthesis of polycyclic uracil derivatives. The method is based on palladium-catalysed Sonogashira-Hagihara and Suzuki-Miyaura cross-coupling reactions followed by Brønsted acid-mediated cycloisomerisation. The developed methodology tolerates various functional groups and leads to moderate up to quantitative yields of the final products. The impact of different functional groups on the optical properties was studied by UV-vis and fluorescence spectroscopy.
Collapse
Affiliation(s)
| | - Peter Ehlers
- Universität Rostock, Institut für Chemie, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Peter Langer
- Universität Rostock, Institut für Chemie, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| |
Collapse
|
7
|
Kabir M, Ghosh P, Gozem S. Electronic Structure Methods for Simulating Flavin's Spectroscopy and Photophysics: Comparison of Multi-reference, TD-DFT, and Single-Reference Wave Function Methods. J Phys Chem B 2024; 128:7545-7557. [PMID: 39074870 PMCID: PMC11317985 DOI: 10.1021/acs.jpcb.4c03748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
The use of flavins and flavoproteins in photocatalytic, sensing, and biotechnological applications has led to a growing interest in computationally modeling the excited-state electronic structure and photophysics of flavin. However, there is limited consensus regarding which computational methods are appropriate for modeling flavin's photophysics. We compare the energies of low-lying excited states of flavin computed with time-dependent density functional theory (TD-DFT), equation-of-motion coupled cluster (EOM-EE-CCSD), scaled opposite-spin configuration interaction [SOS-CIS(D)], multiconfiguration pair-density functional theory (MC-PDFT), and several multireference perturbation theory (MR-PT2) methods. In the first part, we focus on excitation energies of the first singlet excited state (S1) of five different redox and protonation states of flavin, with the goal of finding a suitable active space for MR-PT2 calculations. In the second part, we construct two sets of one-dimensional potential energy surfaces connecting the S0 and S1 equilibrium geometries (S0-S1 path) and the S1 (π,π*) and S2 (n,π*) equilibrium geometries (S1-S2 path). The first path therefore follows a Franck-Condon active mode of flavin while the second path maps crossings points between low-lying singlet and triplet states in flavin. We discuss the similarities and differences in the TD-DFT, EOM-EE-CCSD, SOS-CIS(D), MC-PDFT and MR-PT2 energy profiles along these paths. We find that (TD-)DFT methods are suitable for applications such as simulating the spectra of flavins but are inconsistent with several other methods when used for some geometry optimizations and when describing the energetics of dark (n,π*) states. MR-PT2 methods show promise for the simulation of flavin's low-lying excited states, but the selection of orbitals for the active space and the number of roots used for state averaging must be done carefully to avoid artifacts. Some properties, such as the intersystem crossing geometry and energy between the S1 (π,π*) and T2 (n,π*) states, may require additional benchmarking before they can be determined quantitatively.
Collapse
Affiliation(s)
- Mohammad
Pabel Kabir
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Paulami Ghosh
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
8
|
Xu Y, Peschel MT, Jänchen M, Foja R, Storch G, Thyrhaug E, de Vivie-Riedle R, Hauer J. Determining Excited-State Absorption Properties of a Quinoid Flavin by Polarization-Resolved Transient Spectroscopy. J Phys Chem A 2024; 128:3830-3839. [PMID: 38709806 PMCID: PMC11103687 DOI: 10.1021/acs.jpca.4c01260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024]
Abstract
As important naturally occurring chromophores, photophysical/chemical properties of quinoid flavins have been extensively studied both experimentally and theoretically. However, little is known about the transition dipole moment (TDM) orientation of excited-state absorption transitions of these important compounds. This aspect is of high interest in the fields of photocatalysis and quantum control studies. In this work, we employ polarization-associated spectra (PAS) to study the excited-state absorption transitions and the underlying TDM directions of a standard quinoid flavin compound. As compared to transient absorption anisotropy (TAA), an analysis based on PAS not only avoids diverging signals but also retrieves the relative angle for ESA transitions with respect to known TDM directions. Quantum chemical calculations of excited-state properties lead to good agreement with TA signals measured in magic angle configuration. Only when comparing experiment and theory for TAA spectra and PAS, do we find deviations when and only when the S0 → S1 of flavin is used as a reference. We attribute this to the vibronic coupling of this transition to a dark state. This effect is only observed in the employed polarization-controlled spectroscopy and would have gone unnoticed in conventional TA.
Collapse
Affiliation(s)
- Yi Xu
- TUM
School of Natural Sciences, Department of Chemistry and Catalysis
Research Center, Technical University of
Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Martin T. Peschel
- Department
of Chemistry, Ludwig-Maximilians-Universität
München, 81377 München, Germany
| | - Miriam Jänchen
- TUM
School of Natural Sciences, Department of Chemistry and Catalysis
Research Center, Technical University of
Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Richard Foja
- TUM
School of Natural Sciences, Department of Chemistry and Catalysis
Research Center, Technical University of
Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Golo Storch
- TUM
School of Natural Sciences, Department of Chemistry and Catalysis
Research Center, Technical University of
Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Erling Thyrhaug
- TUM
School of Natural Sciences, Department of Chemistry and Catalysis
Research Center, Technical University of
Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | | | - Jürgen Hauer
- TUM
School of Natural Sciences, Department of Chemistry and Catalysis
Research Center, Technical University of
Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
9
|
Shi Q, Kang XW, Liu Z, Sakthivel P, Aman H, Chang R, Yan X, Pang Y, Dai S, Ding B, Ye J. Single-Electron Oxidation-Initiated Enantioselective Hydrosulfonylation of Olefins Enabled by Photoenzymatic Catalysis. J Am Chem Soc 2024; 146:2748-2756. [PMID: 38214454 DOI: 10.1021/jacs.3c12513] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Controlling the enantioselectivity of hydrogen atom transfer (HAT) reactions has been a long-standing synthetic challenge. While recent advances on photoenzymatic catalysis have demonstrated the great potential of non-natural photoenzymes, all of the transformations are initiated by single-electron reduction of the substrate, with only one notable exception. Herein, we report an oxidation-initiated photoenzymatic enantioselective hydrosulfonylation of olefins using a novel mutant of gluconobacter ene-reductase (GluER-W100F-W342F). Compared to known photoenzymatic systems, our approach does not rely on the formation of an electron donor-acceptor complex between the substrates and enzyme cofactor and simplifies the reaction system by obviating the addition of a cofactor regeneration mixture. More importantly, the GluER variant exhibits high reactivity and enantioselectivity and a broad substrate scope. Mechanistic studies support the proposed oxidation-initiated mechanism and reveal that a tyrosine-mediated HAT process is involved.
Collapse
Affiliation(s)
- Qinglong Shi
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiu-Wen Kang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiyong Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pandaram Sakthivel
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hasil Aman
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyu Yan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yubing Pang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaobo Dai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bei Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Zhang X, Liu L, Li W, Wang C, Wang J, Fang WH, Chen X. Extended Single-Electron Transfer Model and Dynamically Associated Energy Transfer Event in a Dual-Functional Catalyst System. JACS AU 2023; 3:1452-1463. [PMID: 37234115 PMCID: PMC10206599 DOI: 10.1021/jacsau.3c00098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
Organic photocatalysis has been developed flourishingly to rely on bimolecular energy transfer (EnT) or oxidative/reductive electron transfer (ET), promoting a variety of synthetic transformations. However, there are rare examples to merge EnT and ET processes rationally within one chemical system, of which the mechanistic investigation still remains in its infancy. Herein, the first mechanistic illustration and kinetic assessments of the dynamically associated EnT and ET paths were conducted for realizing the C-H functionalization in a cascade photochemical transformation of isomerization and cyclization by using the dual-functional organic photocatalyst of riboflavin. An extended single-electron transfer model of transition-state-coupled dual-nonadiabatic crossings was explored to analyze the dynamic behaviors in the proton transfer-coupled cyclization. This can also be used to clarify the dynamic correlation with the EnT-driven E → Z photoisomerization that has been kinetically evaluated by using Fermi's golden rule with the Dexter model. The present computational results of electron structures and kinetic data contribute to a fundamental basis for understanding the photocatalytic mechanism of the combined operation of EnT and ET strategies, which will guide the design and manipulation for the implementation of multiple activation modes based on a single photosensitizer.
Collapse
Affiliation(s)
- Xiaorui Zhang
- Department
of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| | - Lin Liu
- Department
of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| | - Weijia Li
- Department
of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| | - Chu Wang
- Department
of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| | - Juanjuan Wang
- College
of Nuclear Science and Technology, Beijing
Normal University, Xin-wai-da-jie
No. 19, Beijing 100875, China
- Laboratory
of Beam Technology and Energy Materials, Advanced Institute of Natural
Science, Beijing Normal University, Zhuhai 519087, China
| | - Wei-Hai Fang
- Department
of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| | - Xuebo Chen
- Department
of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| |
Collapse
|
11
|
Takeda A, Oka M, Iida H. Atom-Economical Syntheses of Dihydropyrroles Using Flavin-Iodine-Catalyzed Aerobic Multistep and Multicomponent Reactions. J Org Chem 2023. [PMID: 37183405 DOI: 10.1021/acs.joc.3c00444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Herein, we report facile, atom-economical syntheses of multisubstituted 2,3-dihydropyrroles using flavin-iodine-catalyzed aerobic oxidative multistep transformations of chalcones with β-enamine ketones or 1,3-dicarbonyl compounds and amines. Exploiting coupled flavin-iodine catalysis, the multistep reaction, including C-C and C-N bond formation, is promoted only by the consumption of O2 (1 atm), thus allowing aerobic oxidative synthesis that generates green H2O as the only waste.
Collapse
Affiliation(s)
- Aki Takeda
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Marina Oka
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| |
Collapse
|
12
|
Čubiňák M, Varma N, Oeser P, Pokluda A, Pavlovska T, Cibulka R, Sikorski M, Tobrman T. Tuning the Photophysical Properties of Flavins by Attaching an Aryl Moiety via Direct C-C Bond Coupling. J Org Chem 2023; 88:218-229. [PMID: 36525315 DOI: 10.1021/acs.joc.2c02168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Palladium-catalyzed Suzuki reactions of brominated flavin derivatives (5-deazaflavins, alloxazines, and isoalloxazines) with boronic acids or boronic acid esters that occur readily under mild conditions were shown to be an effective tool for the synthesis of a broad range of 7/8-arylflavins. In general, the introduction of an aryl/heteroaryl group by means of a direct C-C bond has been shown to be a promising approach to tuning the photophysical properties of flavin derivatives. The aryl substituents caused a bathochromic shift in the absorption spectra of up to 52 nm and prolonged the fluorescence lifetime by up to 1 order of magnitude. Moreover, arylation of flavin derivatives decreased their ability to generate singlet oxygen.
Collapse
Affiliation(s)
- Marek Čubiňák
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28Prague 6, Czech Republic
| | - Naisargi Varma
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614Poznań, Poland
| | - Petr Oeser
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28Prague 6, Czech Republic
| | - Adam Pokluda
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28Prague 6, Czech Republic
| | - Tetiana Pavlovska
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28Prague 6, Czech Republic
| | - Radek Cibulka
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28Prague 6, Czech Republic
| | - Marek Sikorski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614Poznań, Poland
| | - Tomáš Tobrman
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28Prague 6, Czech Republic
| |
Collapse
|
13
|
Yang X, Ma L, Shao H, Zhou Z, Ling X, Yao M, Luo G, Scoditti S, Sicilia E, Mazzone G, Gao M, Tang BZ. Riboflavin-Promoted In Situ Photoactivation of Dihydroalkaloid Prodrugs for Cancer Therapy. J Med Chem 2022; 65:15738-15748. [PMID: 36410876 DOI: 10.1021/acs.jmedchem.2c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cancer therapies usually suffer from poor targeting ability and serious side effects. Photoactivatable cancer therapy has the significant advantage of a high spatiotemporal resolution, but most photoactivatable prodrugs require decoration with stoichiometric photocleavable groups, which are only responsive to ultraviolet irradiation and suffer from low reaction efficiency. To tackle these challenges, we herein propose a photoactivation strategy with biogenic riboflavin as the photosensitizer to promote the in situ transformation of noncytotoxic dihydroalkaloid prodrugs dihydrochelerythrine (DHCHE), dihydrosanguinarine (DHSAN), and dihydronitidine (DHNIT) into anticancer alkaloid drugs chelerythrine (CHE), sanguinarine (SAN), and nitidine (NIT), respectively, which can efficiently kill cancer cells and inhibit in vivo tumor growth. Meanwhile, the photoactivatable transformation can be in situ monitored by green-to-red fluorescence conversion, which will contribute to easy controlling of the therapeutic dose. The proposed photoactivatable transformation mechanism was also explored by density functional theory (DFT) calculations. We believe this riboflavin-promoted and imaging-guided photoactivation strategy is promising for precise cancer therapy.
Collapse
Affiliation(s)
- Xin Yang
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Limin Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Hongwei Shao
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Zikai Zhou
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Xia Ling
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Mengyu Yao
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Guowen Luo
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Stefano Scoditti
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Gloria Mazzone
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, 2001 Longxiang Boulevard, Longgang, Shenzhen, Guangdong 518172, China
| |
Collapse
|
14
|
Pavlovska T, Král Lesný D, Svobodová E, Hoskovcová I, Archipowa N, Kutta RJ, Cibulka R. Tuning Deazaflavins Towards Highly Potent Reducing Photocatalysts Guided by Mechanistic Understanding - Enhancement of the Key Step by the Internal Heavy Atom Effect. Chemistry 2022; 28:e202200768. [PMID: 35538649 PMCID: PMC9541856 DOI: 10.1002/chem.202200768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/11/2022]
Abstract
Deazaflavins are well suited for reductive chemistry acting via a consecutive photo-induced electron transfer, in which their triplet state and semiquinone - the latter is formed from the former after electron transfer from a sacrificial electron donor - are key intermediates. Guided by mechanistic investigations aiming to increase intersystem crossing by the internal heavy atom effect and optimising the concentration conditions to avoid unproductive excited singlet reactions, we synthesised 5-aryldeazaflavins with Br or Cl substituents on different structural positions via a three-component reaction. Bromination of the deazaisoalloxazine core leads to almost 100 % triplet yield but causes photo-instability and enhances unproductive side reactions. Bromine on the 5-phenyl group in ortho position does not affect the photostability, increases the triplet yield, and allows its efficient usage in the photocatalytic dehalogenation of bromo- and chloroarenes with electron-donating methoxy and alkyl groups even under aerobic conditions. Reductive powers comparable to lithium are achieved.
Collapse
Affiliation(s)
- Tetiana Pavlovska
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - David Král Lesný
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - Eva Svobodová
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - Irena Hoskovcová
- Department of Inorganic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - Nataliya Archipowa
- Institute for Biophysics and Physical BiochemistryUniversity of RegensburgD-93053RegensburgGermany
| | - Roger Jan Kutta
- Institute of Physical and Theoretical ChemistryUniversity of RegensburgD-93053RegensburgGermany
| | - Radek Cibulka
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| |
Collapse
|
15
|
Takeda A, Okai H, Watabe K, Iida H. Metal-Free Atom-Economical Synthesis of Tetra-Substituted Imidazoles via Flavin-Iodine Catalyzed Aerobic Cross-Dehydrogenative Coupling of Amidines and Chalcones. J Org Chem 2022; 87:10372-10376. [PMID: 35839306 DOI: 10.1021/acs.joc.2c00596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein, we demonstrated the oxidative cross-dehydrogenative coupling between amidines and chalcones catalyzed by flavin and iodine. The riboflavin-iodine catalytic system played multiple roles in substrate- and O2-activation, enabling the facile and atom-economical synthesis of tetra-substituted imidazoles in good yields (60-87%). This metal-free reaction consumed only 1 equiv of molecular oxygen and generated 2 equiv of environmentally benign H2O as the only byproduct.
Collapse
Affiliation(s)
- Aki Takeda
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Hayaki Okai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Kyoji Watabe
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| |
Collapse
|
16
|
Crocker LB, Lee JH, Mital S, Mills GC, Schack S, Bistrović-Popov A, Franck CO, Mela I, Kaminski CF, Christie G, Fruk L. Tuning riboflavin derivatives for photodynamic inactivation of pathogens. Sci Rep 2022; 12:6580. [PMID: 35449377 PMCID: PMC9022420 DOI: 10.1038/s41598-022-10394-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/28/2022] [Indexed: 11/14/2022] Open
Abstract
The development of effective pathogen reduction strategies is required due to the rise in antibiotic-resistant bacteria and zoonotic viral pandemics. Photodynamic inactivation (PDI) of bacteria and viruses is a potent reduction strategy that bypasses typical resistance mechanisms. Naturally occurring riboflavin has been widely used in PDI applications due to efficient light-induced reactive oxygen species (ROS) release. By rational design of its core structure to alter (photo)physical properties, we obtained derivatives capable of outperforming riboflavin's visible light-induced PDI against E. coli and a SARS-CoV-2 surrogate, revealing functional group dependency for each pathogen. Bacterial PDI was influenced mainly by guanidino substitution, whereas viral PDI increased through bromination of the flavin. These observations were related to enhanced uptake and ROS-specific nucleic acid cleavage mechanisms. Trends in the derivatives' toxicity towards human fibroblast cells were also investigated to assess viable therapeutic derivatives and help guide further design of PDI agents to combat pathogenic organisms.
Collapse
Affiliation(s)
- Leander B Crocker
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Ju Hyun Lee
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Suraj Mital
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Gabrielle C Mills
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Sina Schack
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Andrea Bistrović-Popov
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Christoph O Franck
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Ioanna Mela
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| |
Collapse
|
17
|
Torregrosa-Chinillach A, Chinchilla R. Visible Light-Induced Aerobic Oxidative Dehydrogenation of C-N/C-O to C=N/C=O Bonds Using Metal-Free Photocatalysts: Recent Developments. Molecules 2022; 27:497. [PMID: 35056812 PMCID: PMC8780101 DOI: 10.3390/molecules27020497] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Performing synthetic transformation using visible light as energy source, in the presence of a photocatalyst as a promoter, is currently of high interest, and oxidation reactions carried out under these conditions using oxygen as the final oxidant are particularly convenient from an environmental point of view. This review summarizes the recent developments achieved in the oxidative dehydrogenation of C-N and C-O bonds, leading to C=N and C=O bonds, respectively, using air or pure oxygen as oxidant and metal-free homogeneous or recyclable heterogeneous photocatalysts under visible light irradiation.
Collapse
Affiliation(s)
| | - Rafael Chinchilla
- Department of Organic Chemistry, Faculty of Sciences, Institute of Organic Synthesis (ISO), University of Alicante, Apdo. 99, 03080 Alicante, Spain;
| |
Collapse
|
18
|
Iida H. Recent Development of Aerobic Oxidative Transformations by Flavin Catalysis. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University
| |
Collapse
|
19
|
Mohammed HS, Khadrawy YA. Antidepressant and antioxidant effects of transcranial irradiation with 830-nm low-power laser in an animal model of depression. Lasers Med Sci 2021; 37:1615-1623. [PMID: 34487275 DOI: 10.1007/s10103-021-03410-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
The present study aimed at investigating the antidepressant and antioxidant actions of near-infrared (NIR) laser at a wavelength of 830 nm and power of 100 mW which applied transcranially on an animal model of depression induced by repeated doses of reserpine (0.2 mg/kg). Thirty male Wistar adult rats were divided into three groups: rat model of depression; rat model of depression irradiated with laser for 14 days after induction of depression; and the control group that was given the drug vehicle and sham-exposed to the laser. Forced swimming test (FST) was used to verify the induction of animal model of depression and to screen the effect of antidepressant effect of low-level laser at the end of the experiment. Monoamine level, oxidative stress markers, and activities of acetylcholinesterase (AchE) and monoamine oxidase (MAO) were determined in the cortex and hippocampus of the rat brain. Reserpine resulted in depletion of monoamines and elevation in the oxidative stress markers and change in the enzymatic activities measured in both brain areas. Laser irradiation has an inhibitory action on the monoamine oxidase (MAO) in the cortex and hippocampus leading to elevation of the monoamine levels and attenuation of the oxidative stress in the studied areas. FST has emphasized the antidepressant effect of the utilized laser irradiation parameters on the behavioral level. The present findings provide evidence for the antidepressant and antioxidant actions of NIR low-power laser in the rat model of depression. Accordingly, low-laser irradiation may be presented as a potential candidate modality for depression treatment.
Collapse
Affiliation(s)
- Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Yasser A Khadrawy
- Medical Physiology Department, National Research Center, Giza, Egypt
| |
Collapse
|
20
|
Hassan Tolba A, Krupička M, Chudoba J, Cibulka R. Amide Bond Formation via Aerobic Photooxidative Coupling of Aldehydes with Amines Catalyzed by a Riboflavin Derivative. Org Lett 2021; 23:6825-6830. [PMID: 34424722 DOI: 10.1021/acs.orglett.1c02391] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report an effective, operationally simple, and environmentally friendly system for the synthesis of tertiary amides by the oxidative coupling of aromatic or aliphatic aldehydes with amines mediated by riboflavin tetraacetate (RFTA), an inexpensive organic photocatalyst, and visible light using oxygen as the sole oxidant. The method is based on the oxidative power of an excited flavin catalyst and the relatively low oxidation potential of the hemiaminal formed by amine to aldehyde addition.
Collapse
|
21
|
Pokluda A, Anwar Z, Boguschová V, Anusiewicz I, Skurski P, Sikorski M, Cibulka R. Robust Photocatalytic Method Using Ethylene‐Bridged Flavinium Salts for the Aerobic Oxidation of Unactivated Benzylic Substrates. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adam Pokluda
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Zubair Anwar
- Faculty of Chemistry Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 8 61–614 Poznań Poland
| | - Veronika Boguschová
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Iwona Anusiewicz
- Faculty of Chemistry University of Gdańsk Wita Stwosza 63 80–308 Gdańsk Poland
| | - Piotr Skurski
- Faculty of Chemistry University of Gdańsk Wita Stwosza 63 80–308 Gdańsk Poland
| | - Marek Sikorski
- Faculty of Chemistry Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 8 61–614 Poznań Poland
| | - Radek Cibulka
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| |
Collapse
|
22
|
Torregrosa-Chinillach A, Chinchilla R. Synthesis of Xanthones, Thioxanthones and Acridones by a Metal-Free Photocatalytic Oxidation Using Visible Light and Molecular Oxygen. Molecules 2021; 26:molecules26040974. [PMID: 33673146 PMCID: PMC7918112 DOI: 10.3390/molecules26040974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022] Open
Abstract
9H-Xanthenes, 9H-thioxanthenes and 9,10-dihydroacridines can be easily oxidized to the corresponding xanthones, thioxanthones and acridones, respectively, by a simple photo-oxidation procedure carried out using molecular oxygen as oxidant under the irradiation of visible blue light and in the presence of riboflavin tetraacetate as a metal-free photocatalyst. The obtained yields are high or quantitative.
Collapse
|
23
|
Hartman T, Reisnerová M, Chudoba J, Svobodová E, Archipowa N, Kutta RJ, Cibulka R. Photocatalytic Oxidative [2+2] Cycloelimination Reactions with Flavinium Salts: Mechanistic Study and Influence of the Catalyst Structure. Chempluschem 2021; 86:373-386. [DOI: 10.1002/cplu.202000767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Tomáš Hartman
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Martina Reisnerová
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Josef Chudoba
- Central Laboratories University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Eva Svobodová
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Nataliya Archipowa
- Manchester Institute of Biotechnology and School of Chemistry The University of Manchester Manchester M1 7DN United Kingdom
| | - Roger Jan Kutta
- Institute of Physical and Theoretical Chemistry University of Regensburg 93040 Regensburg Germany
| | - Radek Cibulka
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| |
Collapse
|
24
|
Oka M, Katsube D, Tsuji T, Iida H. Phototropin-Inspired Chemoselective Synthesis of Unsymmetrical Disulfides: Aerobic Oxidative Heterocoupling of Thiols Using Flavin Photocatalysis. Org Lett 2020; 22:9244-9248. [PMID: 33226236 DOI: 10.1021/acs.orglett.0c03458] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inspired by the photochemical mechanism of a plant blue-light receptor, a unique flavin-based photocatalytic system was developed for the chemoselective heterocoupling of two different thiols, which enabled the facile synthesis of unsymmetrical disulfides. Owing to the redox- and photo-organocatalysis of flavin, the coupling reaction took place under mild metal-free conditions and visible light irradiation with the use of air, which is recognized as the ideal green oxidant.
Collapse
Affiliation(s)
- Marina Oka
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504 Japan
| | - Daichi Katsube
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504 Japan
| | - Takeshi Tsuji
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504 Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504 Japan
| |
Collapse
|
25
|
Okai H, Tanimoto K, Ohkado R, Iida H. Multicomponent Synthesis of Imidazo[1,2-a]pyridines: Aerobic Oxidative Formation of C–N and C–S Bonds by Flavin–Iodine-Coupled Organocatalysis. Org Lett 2020; 22:8002-8006. [DOI: 10.1021/acs.orglett.0c02929] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hayaki Okai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Kazumasa Tanimoto
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Ryoma Ohkado
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| |
Collapse
|
26
|
Guo H, Xia H, Ma X, Chen K, Dang C, Zhao J, Dick B. Efficient Photooxidation of Sulfides with Amidated Alloxazines as Heavy-atom-free Photosensitizers. ACS OMEGA 2020; 5:10586-10595. [PMID: 32426617 PMCID: PMC7227068 DOI: 10.1021/acsomega.0c01087] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Photooxidation utilizing visible light, especially with naturally abundant O2 as the oxygen source, has been well-accepted as a sustainable and efficient procedure in organic synthesis. To ensure the intersystem crossing and triplet quantum yield for efficient photosensitization, we prepared amidated alloxazines (AAs) and investigated their photophysical properties and performance as heavy-atom-free triplet photosensitizers and compared with those of flavin (FL) and riboflavin tetraacetate (RFTA). Because of the difference in the framework structure of AAs and FL and the introduction of carbonyl moiety, the absorption of FL at ∼450 nm is blue-shifted to ∼380 nm and weakened (ε = 8.7 × 103 for FL to ∼6.8 × 103 M-1 cm-1), but the absorption at ∼340 nm is red-shifted to ∼350 nm and enhanced by ∼50% (from ε = 6.4 × 103 for FL to ∼9.9 × 103 M-1 cm-1) in AAs. The intersystem crossing rates from the S1 to T1 are also enhanced in these AAs derivatives, while the fluorescence quantum yield decreases from ∼30 to ∼7% for FL and AAs, respectively, making the triplet excited state lifetime and the singlet oxygen quantum yield of AAs at least comparable to those of FL and RFTA. We examined the performance of these heave-atom-free chromophores in the photooxidation of sulfides to afford sulfoxides. In accordance with the prolonged triplet excited state lifetime and enhanced triplet quantum yield, 2-5-fold performance enhancements were observed for AAs in the photooxidation of sulfides with respect to FL. We proposed that the key reactive oxygen species of AA-sensitized photooxidation are singlet oxygen and superoxide radical anion based on mechanistic investigations. The research highlights the superior performance of AAs in photocatalysis and would be helpful to rationalize the design of efficient heavy-atom-free organic photocatalysts.
Collapse
Affiliation(s)
- Huimin Guo
- State
Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, P. R. China
| | - Hongyu Xia
- State
Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, P. R. China
| | - Xiaolin Ma
- State
Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, P. R. China
| | - Kepeng Chen
- State
Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, P. R. China
| | - Can Dang
- State
Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, P. R. China
| | - Jianzhang Zhao
- State
Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, P. R. China
| | - Bernhard Dick
- Institut
für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, Regensburg 93053, Germany
| |
Collapse
|
27
|
Flavin-Conjugated Iron Oxide Nanoparticles as Enzyme-Inspired Photocatalysts for Azo Dye Degradation. Catalysts 2020. [DOI: 10.3390/catal10030324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In this work, a new photocatalytic system consisting of iron oxide nanoparticles (IONPs), coated with a catechol-flavin conjugate (DAFL), is synthesized and explored for use in water remediation. In order to test the efficiency of the catalyst, the photodegradation of amaranth (AMT), an azo dye water pollutant, was performed under aerobic and anaerobic conditions, using either ethylenediaminetetraacetic acid (EDTA) or 2-(N-morpholino)ethanesulfonic acid (MES) as electron donors. Depending on the conditions, either dye photoreduction or photooxidation were observed, indicating that flavin-coated iron-oxide nanoparticles can be used as a versatile enzyme-inspired photocatalysts.
Collapse
|
28
|
Tolba AH, Vávra F, Chudoba J, Cibulka R. Tuning Flavin-Based Photocatalytic Systems for Application in the Mild Chemoselective Aerobic Oxidation of Benzylic Substrates. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901628] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Amal Hassan Tolba
- Department of Organic Chemistry; University of Chemistry and Technology, Prague; Technická 5 166 28 Prague Czech Republic
| | - František Vávra
- Department of Organic Chemistry; University of Chemistry and Technology, Prague; Technická 5 166 28 Prague Czech Republic
| | - Josef Chudoba
- Central Laboratories; University of Chemistry and Technology Prague; Technická 5 166 28 Prague Czech Republic
| | - Radek Cibulka
- Department of Organic Chemistry; University of Chemistry and Technology, Prague; Technická 5 166 28 Prague Czech Republic
| |
Collapse
|
29
|
Wei LQ, Ye BH. Cyclometalated Ir-Zr Metal-Organic Frameworks as Recyclable Visible-Light Photocatalysts for Sulfide Oxidation into Sulfoxide in Water. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41448-41457. [PMID: 31604013 DOI: 10.1021/acsami.9b15646] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aerobic photo-oxidation of sulfide into sulfoxide in water is of great interest in green chemistry. In this study, three highly stable Ir(III)-Zr(IV) metal-organic frameworks (Ir-Zr MOFs), namely Zr6-Irbpy (bpy is 2,2'-bipyridine), Zr6-IrbpyOMe (bpyOMe is 4,4'-dimethoxy-2,2'-bipyridine), and Zr6-Irphen (phen is 1,10-phenanthroline), are constructed by using [Ir(pqc)2(L)2]Cl complexes (where pqc is 2-phenylquinoline-4-carboxylic acid and L is an ancillary ligand bpy, bpyOMe, or phen) as linkers and Zr6 cluster as nodes. The constructed Ir-Zr MOFs present high catalytic activity on aerobic photo-oxidation of sulfide into sulfoxide under visible light irradiation in water at room temperature. Moreover, the reaction is high chemoselectivity and functional group tolerance. The catalyst can be readily recycled and reused at least 10 times without loss of catalytic activity. Mechanism studies demonstrate that superoxide radical is the reactive oxygen species in the sulfoxidation, which is generated by electron transfer from the excited triplet photosensitizer 3[Ir-Zr-MOF]* to O2. The high activity of photocatalytic sulfoxidation in water may be attributed to the stabilization of the persulfoxide intermediate by hydrogen bond formation with water solvent, which accelerates the conversion of persulfoxide into sulfoxide and prevents further oxidation of sulfoxide into sulfone. This work provides a new strategy for the green synthesis of sulfoxides under ambient conditions.
Collapse
Affiliation(s)
- Lian-Qiang Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
- College of Chemistry and Bioengineering , Hechi University , Yizhou , 546300 , China
| | - Bao-Hui Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
| |
Collapse
|
30
|
Tanimoto K, Ohkado R, Iida H. Aerobic Oxidative Sulfenylation of Pyrazolones and Pyrazoles Catalyzed by Metal-Free Flavin–Iodine Catalysis. J Org Chem 2019; 84:14980-14986. [DOI: 10.1021/acs.joc.9b02422] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kazumasa Tanimoto
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Ryoma Ohkado
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| |
Collapse
|
31
|
Bosque I, Bach T. 3-Acetoxyquinuclidine as Catalyst in Electron Donor–Acceptor Complex-Mediated Reactions Triggered by Visible Light. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01039] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Irene Bosque
- Department of Chemistry and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany
| | - Thorsten Bach
- Department of Chemistry and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
32
|
Schmermund L, Jurkaš V, Özgen FF, Barone GD, Büchsenschütz HC, Winkler CK, Schmidt S, Kourist R, Kroutil W. Photo-Biocatalysis: Biotransformations in the Presence of Light. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00656] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Luca Schmermund
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - Valentina Jurkaš
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - F. Feyza Özgen
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Giovanni D. Barone
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Hanna C. Büchsenschütz
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Christoph K. Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - Sandy Schmidt
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
33
|
Zelenka J, Svobodová E, Tarábek J, Hoskovcová I, Boguschová V, Bailly S, Sikorski M, Roithová J, Cibulka R. Combining Flavin Photocatalysis and Organocatalysis: Metal-Free Aerobic Oxidation of Unactivated Benzylic Substrates. Org Lett 2018; 21:114-119. [PMID: 30582822 DOI: 10.1021/acs.orglett.8b03547] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report a system with ethylene-bridged flavinium salt 2b which catalyzes the aerobic oxidation of toluenes and benzyl alcohols with high oxidation potential ( Eox > +2.5 V vs SCE) to give the corresponding benzoic acids under visible light irradiation. This is caused by the high oxidizing power of excited 2b ( E(2b*) = +2.67 V vs SCE) involved in photooxidation and by the accompanying dark organocatalytic oxygenation provided by the in situ formed flavin hydroperoxide 2b-OOH.
Collapse
Affiliation(s)
- Jan Zelenka
- Institute for Molecules and Materials , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands
| | | | - Ján Tarábek
- Institute of Organic Chemistry and Biochemistry , Academy of Science of the Czech Republic , Flemingovo náměstí 542/2 , 16610 Prague , Czech Republic
| | | | | | | | - Marek Sikorski
- Faculty of Chemistry ; Adam Mickiewicz University in Poznan , Umultowska 89b , 61614 Poznan , Poland
| | - Jana Roithová
- Institute for Molecules and Materials , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands
| | | |
Collapse
|