1
|
Hussain M, Mues Genannt Koers L, Spahn I, Spellerberg S, Neumaier B, Qaim SM. Excitation functions of 72Ge(p,xn) 72,71As reactions from threshold up to 45 MeV for production of the non-standard positron emitter 72As. Sci Rep 2024; 14:16724. [PMID: 39030288 PMCID: PMC11271559 DOI: 10.1038/s41598-024-67319-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024] Open
Abstract
Nuclear reaction cross sections for the formation of 72As and 71As in proton-induced reactions on enriched 72Ge targets were measured up to 45 MeV utilizing three different cyclotrons at the Forschungszentrum Jülich. The stacked-thin sample activation technique in combination with high-resolution γ-ray spectrometry was used. The major γ-ray peaks of 72As and 71As formed via the 72Ge(p,n)72As and 72Ge(p,2n)71As reactions, respectively, were analyzed. The incident proton energy and flux on a foil were determined using several monitor reactions. Based on integrated counts, irradiation data and the nuclear decay data, the reaction cross sections were measured. All data describe the first measurements. Theoretical nuclear model calculations were then carried out by using the codes TALYS 1.96, EMPIRE 3.2 and ALICE-IPPE. A very good agreement between the measured data and calculated values was found. The new data enabled us to calculate the thick target yields and estimate the radionuclidic impurities for a given energy range. Over the optimum energy range Ep = 14 → 7 MeV, the calculated thick target yield of 72As amounts to 272 MBq/μAh with no 71As impurity at all. The 72Ge(p,n)72As reaction on the enriched 72Ge is thus very suitable for clinical scale production of 72As at a medical cyclotron.
Collapse
Affiliation(s)
- Mazhar Hussain
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich (FZJ), 52425, Jülich, Germany.
- Department of Physics, Government College University Lahore (GCUL), Lahore, 54000, Pakistan.
| | - Lucas Mues Genannt Koers
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich (FZJ), 52425, Jülich, Germany
| | - Ingo Spahn
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich (FZJ), 52425, Jülich, Germany.
| | - Stefan Spellerberg
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich (FZJ), 52425, Jülich, Germany
| | - Bernd Neumaier
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich (FZJ), 52425, Jülich, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Cologne, 50937, Germany
| | - Syed M Qaim
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich (FZJ), 52425, Jülich, Germany
| |
Collapse
|
2
|
Bowden G, Scott PJH, Boros E. Radiochemistry: A Hot Field with Opportunities for Cool Chemistry. ACS CENTRAL SCIENCE 2023; 9:2183-2195. [PMID: 38161375 PMCID: PMC10755734 DOI: 10.1021/acscentsci.3c01050] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 01/03/2024]
Abstract
Recent Food and Drug Administration (FDA) approval of diagnostic and therapeutic radiopharmaceuticals and concurrent miniaturization of particle accelerators leading to improved access has fueled interest in the development of chemical transformations suitable for short-lived radioactive isotopes on the tracer scale. This recent renaissance of radiochemistry is paired with new opportunities to study fundamental chemical behavior and reactivity of elements to improve their production, separation, and incorporation into bioactive molecules to generate new radiopharmaceuticals. This outlook outlines pertinent challenges in the field of radiochemistry and indicates areas of opportunity for chemical discovery and development, including those of clinically established (C-11, F-18) and experimental radionuclides in preclinical development across the periodic table.
Collapse
Affiliation(s)
- Gregory
D. Bowden
- Department
of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
- Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, 72074 Tuebingen, Germany
- Cluster
of Excellence iFIT (EXC 2180) “Image Guided and Functionally
Instructed Tumor Therapies”, Eberhard
Karls University of Tuebingen, 72074 Tuebingen, Germany
| | - Peter J. H. Scott
- Department
of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Eszter Boros
- Department
of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Qaim SM, Spahn I, Scholten B, Spellerberg S, Neumaier B. The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Radiochemical separations used in large scale routine production of diagnostic and therapeutic radionuclides at a particle accelerator for patient care are briefly outlined. The role of chemistry at various stages of development of a production route of a novel radionuclide, namely nuclear data measurement, high-current targetry, chemical processing and quality control of the product, is discussed in detail. Special attention is paid to production of non-standard positron emitters (e.g. 44gSc, 64Cu, 68Ga, etc.) at a cyclotron and novel therapeutic radionuclides (e.g. 67Cu, 225Ac, etc.) at an accelerator. Some typical examples of radiochemical methods involved are presented.
Collapse
Affiliation(s)
- Syed M. Qaim
- Institut für Neurowissenschaften und Medizin: INM-5 (Nuklearchemie), Forschungszentrum Jülich GmbH , D-52425 Jülich , Germany
| | - Ingo Spahn
- Institut für Neurowissenschaften und Medizin: INM-5 (Nuklearchemie), Forschungszentrum Jülich GmbH , D-52425 Jülich , Germany
| | - Bernhard Scholten
- Institut für Neurowissenschaften und Medizin: INM-5 (Nuklearchemie), Forschungszentrum Jülich GmbH , D-52425 Jülich , Germany
| | - Stefan Spellerberg
- Institut für Neurowissenschaften und Medizin: INM-5 (Nuklearchemie), Forschungszentrum Jülich GmbH , D-52425 Jülich , Germany
| | - Bernd Neumaier
- Institut für Neurowissenschaften und Medizin: INM-5 (Nuklearchemie), Forschungszentrum Jülich GmbH , D-52425 Jülich , Germany
| |
Collapse
|
4
|
Choiński J, Łyczko M. Prospects for the production of radioisotopes and radiobioconjugates for theranostics. BIO-ALGORITHMS AND MED-SYSTEMS 2021. [DOI: 10.1515/bams-2021-0136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
The development of diagnostic methods in medicine as well as the progress in the synthesis of biologically active compounds allows the use of selected radioisotopes for the simultaneous diagnosis and treatment of diseases, especially cancerous ones, in patients. This approach is called theranostic. This review article includes chemical and physical characterization of chosen theranostic radioisotopes and their compounds that are or could be useful in nuclear medicine.
Collapse
Affiliation(s)
| | - Monika Łyczko
- Institute of Nuclear Chemistry and Technology , Warsaw , Poland
| |
Collapse
|
5
|
Amjed N, Aslam MN, Hussain M, Qaim SM. Evaluation of nuclear reaction cross section data of proton and deuteron induced reactions on 75As, with particular emphasis on the production of 73Se. RADIOCHIM ACTA 2021. [DOI: 10.1515/ract-2021-1018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
75Se (T1/2 = 120 d), 73gSe (T1/2 = 7.1 h) and 72Se (T1/2 = 8.4 d) are important radioisotopes of selenium, being used in tracer studies, PET investigations and as a generator parent, respectively. Cross section data for the formation of those radionuclides in proton and deuteron induced reactions on 75As were critically analyzed up to about 70 MeV. A well-developed evaluation methodology was applied to generate the statistically fitted cross sections, based on the critically analyzed literature experimental data and the theoretical cross section values of three nuclear model codes ALICE-IPPE, TAYLS 1.9, and EMPIRE 3.2. Using the fitted cross sections the integral yield of each radionuclide was calculated. For the estimation of impurities, the integral yield of each radionuclide was compared with the yields of the other two radionuclides over a given energy region, and therefrom the energy range was suggested for the high purity production of each of the radionuclides 75Se, 73Se and 72Se. For production of the very important non-standard positron emitter 73Se via the 75As(p,3n)73Se reaction, the optimum energy range was deduced to be E
p = 40 → 30 MeV, with a thick target yield of 1441 MBq/μAh and the 72,75Se impurity level of <0.1%.
Collapse
Affiliation(s)
- Nouman Amjed
- Division of Science and Technology, Department of Physics , University of Education , Lahore , Pakistan
| | - M. Naveed Aslam
- Department of Physics , COMSATS University Islamabad, Lahore Campus , Lahore , 54000 , Pakistan
| | - Mazhar Hussain
- Department of Physics , Government College University Lahore , Lahore, 54000 , Pakistan
| | - Syed M. Qaim
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich GmbH , D-52425 Jülich , Germany
| |
Collapse
|
6
|
Sanders VA, Cutler CS. Radioarsenic: A promising theragnostic candidate for nuclear medicine. Nucl Med Biol 2021; 92:184-201. [PMID: 32376084 DOI: 10.1016/j.nucmedbio.2020.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
Molecular imaging is a non-invasive process that enables the visualization, characterization, and quantitation of biological processes at the molecular and cellular level. With the emergence of theragnostic agents to diagnose and treat disease for personalized medicine there is a growing need for matched pairs of isotopes. Matched pairs offer the unique opportunity to obtain patient specific information from SPECT or PET diagnostic studies to quantitate in vivo function or receptor density to inform and tailor therapeutic treatment. There are several isotopes of arsenic that have emissions suitable for either or both diagnostic imaging and radiotherapy. Their half-lives are long enough to pair them with peptides and antibodies which take longer to reach maximum uptake to facilitate improved patient pharmacokinetics and dosimetry then can be obtained with shorter lived radionuclides. Arsenic-72 even offers availability from a generator that can be shipped to remote sites and thus enhances availability. Arsenic has a long history as a diagnostic agent, but until recently has suffered from limited availability, lack of suitable chelators, and concerns about toxicity have inhibited its use in nuclear medicine. However, new production methods and novel chelators are coming online and the use of radioarsenic in the pico and nanomolar scale is well below the limits associated with toxicity. This manuscript will review the production routes, separation chemistry, radiolabeling techniques and in vitro/in vivo studies of three medically relevant isotopes of arsenic (arsenic-74, arsenic-72, and arsenic-77).
Collapse
Affiliation(s)
- Vanessa A Sanders
- Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Cathy S Cutler
- Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| |
Collapse
|