1
|
Nemati SS, Dehghan G, Soleymani J, Jouyban A. Advances in electrochemical sensors for naproxen detection: Mechanisms, performance factors, and emerging challenges. Heliyon 2025; 11:e40906. [PMID: 39758385 PMCID: PMC11699440 DOI: 10.1016/j.heliyon.2024.e40906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Naproxen (NAP), a nonsteroidal anti-inflammatory, analgesic, and antipyretic drug, has fewer side effects than similar drugs due to its aryl acetic acid structure. For this reason, it is widely prescribed to manage fever, short-term and long-term pain, and musculoskeletal disorders. However, its use has complications such as changes in kidney function, severe gastrointestinal lesions, and increased bleeding after surgery. In addition, the toxicity of NAP or its metabolites affects the organisms in the ecosystem. Therefore, it is necessary to determine the pharmaceutical quality of produced NAP and measure its amount in living organisms and the environment. Spectroscopy, chromatography, and electrochemical methods have been used to determine NAP. Electrochemical methods have attracted more attention due to their low cost, easy sample preparation, availability, sensitivity, and acceptable results. In addition, using nanomaterials for NAP oxidation results in high surface-to-volume, high available active sites, low cost, and long-term usability with high sensitivity. In this review, electrochemical-based methods for NAP analysis and sensing have been reviewed. Also, the influential factors in NAP identification and evaluation, and their oxidation mechanism have been discussed.
Collapse
Affiliation(s)
- Seyed Saman Nemati
- Laboratory of Biochemistry and Molecular Biology, Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Gholamreza Dehghan
- Laboratory of Biochemistry and Molecular Biology, Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, PO BOX: 99138 Nicosia, North Cyprus, Mersin, 10, Turkey
| |
Collapse
|
2
|
Quddus F, Shah A, Ullah N, Shah I. Metal-Based Nanomaterials for the Sensing of NSAIDS. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:630. [PMID: 38607164 PMCID: PMC11013256 DOI: 10.3390/nano14070630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Cadmium sulfide and zinc oxide nanoparticles were prepared, characterized and used as electrode modifiers for the sensing of two non-steroidal anti-inflammatory drugs (NSAIDs): naproxen and mobic. The structural and morphological characterization of the synthesized nanoparticles was carried out by XRD, UV-Vis spectroscopy, FTIR and scanning electron microscopy. The electrode's enhanced surface area facilitated the signal amplification of the selected NSAIDs. The CdS-modified glassy carbon electrode (GCE) enhanced the electro-oxidation signals of naproxen to four times that of the bare GCE, while the ZnO-modified GCE led to a two-fold enhancement in the electro-oxidation signals of mobic. The oxidation of both NSAIDs occurred in a pH-dependent manner, suggesting the involvement of protons in their electron transfer reactions. The experimental conditions for the sensing of naproxen and mobic were optimized and, under optimized conditions, the modified electrode surface demonstrated the qualities of sensitivity and selectivity, and a fast responsiveness to the target NSAIDs.
Collapse
Affiliation(s)
- Farah Quddus
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan; (F.Q.); (N.U.)
| | - Afzal Shah
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan; (F.Q.); (N.U.)
| | - Naimat Ullah
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan; (F.Q.); (N.U.)
| | - Iltaf Shah
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
3
|
Solomonenko AN, Dorozhko EV, Barek J, Korotkova EI, Semin VO, Erkovich AV, Aseeva NV. Adsorptive stripping voltammetric determination of carbofuran in food using novel type of modified carbon-based electrode with grafted layers of nickel. Talanta 2024; 267:125116. [PMID: 37714038 DOI: 10.1016/j.talanta.2023.125116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023]
Abstract
A voltammetric determination of carbofuran (CBF) was developed using a novel type of carbon-containing electrode (CCE) modified with carbon ink (CI) and a chromatographic sorbent (CS) based of chromaton (Ch), polyethylene glycol and nickel acetylacetonate with grafted layers of nickel (NiCS, stands for Ni modified CS) further denoted as CI/NiCS/CCE. The surface morphology of this modified electrode was investigated by scanning electron microscopy (SEM) and by electrochemical impedance spectroscopy (EIS). CBF which is not electrochemically oxidizable was first hydrolyzed in alkaline medium to give anodically active phenolic analogue CBFP. The electrochemical reactions of CBFP at CI/NiCS/CCE were studied in phosphate buffer (PB) by cyclic voltammetry (CV) and linear sweep adsorptive stripping voltammetry (LSAdSV) using linear scan voltammetry in the first derivative mode (LSVFD). Linear concentration dependences in the concentration ranges from 0.1 to 10 μM and from 10 to 100 μM were obtained by the LSAdSV with limit of detection (LOD) and limit of quantification (LOQ) 0.06 and 0.19 μM, respectively. The novel modified CI/NiCS/CCE showed good stability and selectivity and was successfully used to determine CBF in real samples of vegetables and fruits with LOD 0.01 mg kg-1.
Collapse
Affiliation(s)
- A N Solomonenko
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050, Tomsk, Russia
| | - E V Dorozhko
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050, Tomsk, Russia
| | - J Barek
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Hlavova 8/2030, CZ 128 43, Prague 2, Czech Republic.
| | - E I Korotkova
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050, Tomsk, Russia
| | - V O Semin
- Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Pr. Akademicheskii 2/4, 634055, Tomsk, Russia
| | - A V Erkovich
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050, Tomsk, Russia
| | - N V Aseeva
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050, Tomsk, Russia
| |
Collapse
|
4
|
Abd-Elsabour M, Abou-Krisha MM, Kenawy SH, Yousef TA. A Novel Electrochemical Sensor Based on an Environmentally Friendly Synthesis of Magnetic Chitosan Nanocomposite Carbon Paste Electrode for the Determination of Diclofenac to Control Inflammation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1079. [PMID: 36985972 PMCID: PMC10058736 DOI: 10.3390/nano13061079] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
A simple and eco-friendly electrochemical sensor for the anti-inflammatory diclofenac (DIC) was developed in a chitosan nanocomposite carbon paste electrode (M-Chs NC/CPE). The M-Chs NC/CPE was characterized with FTIR, XRD, SEM, and TEM for the size, surface area, and morphology. The produced electrode showed a high electrocatalytic activity to use the DIC in 0.1 M of the BR buffer (pH 3.0). The effect of scanning speed and pH on the DIC oxidation peak suggests that the DIC electrode process has a typical diffusion characteristic with two electrons and two protons. Furthermore, the peak current linearly proportional to the DIC concentration ranged from 0.025 M to 4.0 M with the correlation coefficient (r2). The sensitivity, limit of detection (LOD; 3σ), and the limit of quantification (LOQ; 10σ) were 0.993, 9.6 µA/µM cm2, 0.007 µM, and 0.024 µM, respectively. In the end, the proposed sensor enables the reliable and sensitive detection of DIC in biological and pharmaceutical samples.
Collapse
Affiliation(s)
- Mohamed Abd-Elsabour
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Mortaga M. Abou-Krisha
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Sayed H. Kenawy
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Refractories, Ceramics and Building Materials Department, National Research Centre, El-Buhouth St., Dokki, Giza 12622, Egypt
| | - Tarek A. Yousef
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Mansoura Laboratory, Toxic and Narcotic Drug, Forensic Medicine Department, Medicolegal Organization, Ministry of Justice, Cairo 11435, Egypt
| |
Collapse
|