1
|
Uskoković V. Lessons from the history of inorganic nanoparticles for inhalable diagnostics and therapeutics. Adv Colloid Interface Sci 2023; 315:102903. [PMID: 37084546 DOI: 10.1016/j.cis.2023.102903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
The respiratory tract is one of the most accessible ones to exogenous nanoparticles, yet drug delivery by their means to it is made extraordinarily challenging because of the plexus of aerodynamic, hemodynamic and biomolecular factors at cellular and extracellular levels that synergistically define the safety and efficacy of this process. Here, the use of inorganic nanoparticles (INPs) for inhalable diagnostics and therapies of the lung is viewed through the prism of the history of studies on the interaction of INPs with the lower respiratory tract. The most conceptually and methodologically innovative and illuminative studies are referred to in the chronological order, as they were reported in the literature, and the trends in the progress of understanding this interaction of immense therapeutic and toxicological significance are being deduced from it. The most outstanding actual trends delineated include the diminishment of toxicity via surface functionalization, cell targeting, tagging and tracking via controlled binding and uptake, hybrid INP treatments, magnetic guidance, combined drug and gene delivery, use as adjuvants in inhalable vaccines, and other. Many of the understudied research directions, which have been accomplished by the nanostructured organic polymers in the pulmonary niche, are discussed. The progress in the use of INPs as inhalable diagnostics or therapeutics has been hampered by their well-recognized inflammatory potential and toxicity in the respiratory tract. However, the annual numbers of methodologically innovative studies have been on the rise throughout the past two decades, suggesting that this is a prolific direction of research, its comparatively poor commercial takings notwithstanding. Still, the lack of consensus on the effects of many INP compositions at low but therapeutically effective doses, the plethora of contradictory reports on ostensibly identical chemical compositions and NP properties, and the many cases of antagonism in combinatorial NP treatments imply that the rational design of inhalable medical devices based on INPs must rely on qualitative principles for the most part and embrace a partially stochastic approach as well. At the same time, the fact that the most studied INPs for pulmonary applications have been those with some of the thickest records of pulmonary toxicity, e.g., carbon, silver, gold, silica and iron oxide, is a silent call for the expansion of the search for new inorganic compositions for use in inhalable therapies to new territories.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, TardigradeNano LLC, 7 Park Vista, Irvine, CA 92604, USA; Department of Mechanical Engineering, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA.
| |
Collapse
|
2
|
Sarfraz S, Ali S, Khan SA, Shah KH, Amin S, Mujahid M, Jamil S, Janjua MRSA. Phase diagram and surface adsorption behavior of benzyl dimethyl hexadecyl ammonium bromide in a binary surfactant-water system. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Abstract
Nanotechnology is the engineering of functional systems at the molecular scale. The term “nanotechnology” is now commonly used to refer to the creation of new objects with nanoscale dimensions between 1 and 100 nm. Functionalities can be added to nanomaterials by interfacing them with biological molecules or structures. The integration of nanomaterials with biology has led to the development of diagnostic devices, contrast agents, analytical tools, and drug-delivery vehicles. Many diseases that do not have a cure today may be cured by nanotechnology in the future. Nanoscience does have an impact on several areas of microbiology. It allows for the study and visualization at the molecular assembly level of a biological process. More studies are needed to determine the environmental and health risks associated with nanomaterials. The current crossdisciplinary inclinations of dental research groups to the nanotechnological field, altogether with the major investments aimed toward developing the methods to grow tooth structures artificially by soft chemical approaches and to understand the mechanism for remineralization of dental defects at various scales in vivo, certainly present a promising trend. Nevertheless, the pace of application of nanotechnology to dentistry has been less than revolutionary. Scientists believe that nanotechnology could give man a better quality of life, power to prevent diseases, speed up tissue reconstruction, and alter his genetic sequence in the future. “There is plenty of room at the bottom.”
Collapse
|
4
|
Uskoković V. When 1+1>2: Nanostructured composites for hard tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:434-51. [PMID: 26354283 PMCID: PMC4567690 DOI: 10.1016/j.msec.2015.07.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/15/2015] [Accepted: 07/23/2015] [Indexed: 12/20/2022]
Abstract
Multicomponent, synergistic and multifunctional nanostructures have taken over the spotlight in the realm of biomedical nanotechnologies. The most prospective materials for bone regeneration today are almost exclusively composites comprising two or more components that compensate for the shortcomings of each one of them alone. This is quite natural in view of the fact that all hard tissues in the human body, except perhaps the tooth enamel, are composite nanostructures. This review article highlights some of the most prospective breakthroughs made in this research direction, with the hard tissues in main focus being those comprising bone, tooth cementum, dentin and enamel. The major obstacles to creating collagen/apatite composites modeled after the structure of bone are mentioned, including the immunogenicity of xenogeneic collagen and continuously failing attempts to replicate the biomineralization process in vitro. Composites comprising a polymeric component and calcium phosphate are discussed in light of their ability to emulate the soft/hard composite structure of bone. Hard tissue engineering composites created using hard material components other than calcium phosphates, including silica, metals and several types of nanotubes, are also discoursed on, alongside additional components deliverable using these materials, such as cells, growth factors, peptides, antibiotics, antiresorptive and anabolic agents, pharmacokinetic conjugates and various cell-specific targeting moieties. It is concluded that a variety of hard tissue structures in the body necessitates a similar variety of biomaterials for their regeneration. The ongoing development of nanocomposites for bone restoration will result in smart, theranostic materials, capable of acting therapeutically in direct feedback with the outcome of in situ disease monitoring at the cellular and subcellular scales. Progress in this research direction is expected to take us to the next generation of biomaterials, designed with the purpose of fulfilling Daedalus' dream - not restoring the tissues, but rather augmenting them.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
5
|
Uskoković V. The Role of Hydroxyl Channel in Defining Selected Physicochemical Peculiarities Exhibited by Hydroxyapatite. RSC Adv 2015; 5:36614-36633. [PMID: 26229593 PMCID: PMC4517856 DOI: 10.1039/c4ra17180b] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mysteries surrounding the most important mineral for the vertebrate biology, hydroxyapatite, are many. Perhaps the Greek root of its name, απαταo, meaning 'to deceive' and given to its mineral form by the early gem collectors who confused it with more precious stones, is still applicable today, though in a different connotation, descriptive of a number of physicochemical peculiarities exhibited by it. Comparable to water as the epitome of peculiarities in the realm of liquids, hydroxyapatite can serve as a paradigm for peculiarities in the world of solids. Ten of the peculiar properties of hydroxyapatite are sketched in this review piece, ranging from (i) the crystal lattice flexibility to (ii) notorious surface layer instability to (iii) finite piezoelectricity, pyroelectricity and conductivity to protons to (iv) accelerated growth and improved osteoconductivity in the electromagnetic fields to (v) high nucleation rate at low supersaturations and low crystal growth rate at high supersaturations to (vi) higher bioactivity and resorbability of biological apatite compared to the synthetic ones, and beyond. An attempt has been made to explain this array of curious characteristics by referring to a particular element of the crystal structure of hydroxyapatite: the hydroxyl ion channel extending in the direction of the c-axis, through a crystallographic column created by the overlapping calcium ion triangles.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, IL 60607-7052, USA
| |
Collapse
|
6
|
Uskoković V. Revisiting the Fundamentals in the Design and Control of Nanoparticulate Colloids in the Frame of Soft Chemistry. REVIEW JOURNAL OF CHEMISTRY 2013; 3:271-303. [PMID: 24490052 PMCID: PMC3906689 DOI: 10.1134/s2079978013040031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review presents thoughts on some of the fundamental features of conceptual models applied in the design of fine particles in the frames of colloid and soft chemistry. A special emphasis is placed on the limitations of these models, an acknowledgment of which is vital in improving their intricacy and effectiveness in predicting the outcomes of the corresponding experimental settings. Thermodynamics of self-assembly phenomena illustrated on the examples of protein assembly and micellization is analyzed in relation to the previously elaborated thesis that each self-assembly in reality presents a co-assembly, since it implies a mutual reorganization of the assembling system and its immediate environment. Parameters used in the design of fine particles by precipitation are discussed while referring to solubility product, various measures of supersaturation levels, induction time, nucleation and crystal growth rates, interfacial energies, and the Ostwald-Lussac law of phases. Again, the main drawbacks and inadequacies of using the aforementioned parameters in tailoring the materials properties in a soft and colloidal chemical setting were particularly emphasized. The basic and practical limitations of zeta-potential analyses, routinely used to stabilize colloidal dispersions and initiate specific interactions between soft chemical entities, were also outlined. The final section of the paper reiterates the unavoidable presence of practical qualitative models in the design and control of nanoparticulate colloids, which is supported by the overwhelming complexity of quantitative relationships that govern the processes of their formation and assembly.
Collapse
Affiliation(s)
- Vuk Uskoković
- Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, 1700 4th Street, QB3 204, Mission Bay Campus, San Francisco, CA 94158-2330707, USA
| |
Collapse
|
7
|
Ladanyi BM. Computer simulation studies of counterion effects on the properties of surfactant systems. Curr Opin Colloid Interface Sci 2013. [DOI: 10.1016/j.cocis.2012.12.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Uskoković V. Dynamic Light Scattering Based Microelectrophoresis: Main Prospects and Limitations. J DISPER SCI TECHNOL 2012; 33:1762-1786. [PMID: 23904690 PMCID: PMC3726226 DOI: 10.1080/01932691.2011.625523] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microelectrophoresis based on the dynamic light scattering (DLS) effect has been a major tool for assessing and controlling the conditions for stability of colloidal systems. However, both the DLS methods for characterization of the hydrodynamic size of dispersed submicron particles and the theory behind the electrokinetic phenomena are associated with fundamental and practical approximations that limit their sensitivity and information output. Some of these fundamental limitations, including the spherical approximation of DLS measurements and an inability of microelectrophoretic analyses of colloidal systems to detect discrete charges and differ between differently charged particle surfaces due to rotational diffusion and particle orientation averaging, are revisited in this work. Along with that, the main prospects of these two analytical methods are mentioned. A detailed review of the role of zeta potential in processes of biochemical nature is given too. It is argued that although zeta potential has been used as one of the main parameters in controlling the stability of colloidal dispersions, its application potentials are much broader. Manipulating surface charges of interacting species in designing complex soft matter morphologies using the concept of zeta potential, intensively investigated recently, is given as one of the examples. Branching out from the field of colloid chemistry, DLS and zeta potential analyses are now increasingly finding application in drug delivery, biotechnologies, physical chemistry of nanoscale phenomena and other research fields that stand on the frontier of the contemporary science. Coupling the DLS-based microelectrophoretic systems with complementary characterization methods is mentioned as one of the prosperous paths for increasing the information output of these two analytical techniques.
Collapse
Affiliation(s)
- Vuk Uskoković
- Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, Mission Bay Campus, San Francisco, California, USA
| |
Collapse
|
9
|
Abstract
This chapter presents a general overview of nanodiagnostics in microbiology and dentistry. Nanodiagnostics uses biosensor technology which is one of the most promising, compact systems consisting of a composite analysis of biological recognition element. Detecting an analyte (glucose, antibiotics, etc.) using a transducer element or detector element to quantify the amount of analyte is the working principle of biosensors. The transducer or the detector element transforms the signal resulting from the interaction of the analyte with the biological element into another signal that can be more easily measured and quantified. Nanobiotechnology scientists have also successfully produced microchips that are coated with biological molecules. The chip is designed to emit an electrical impulse signal when the molecules detect signs of a disease. Special sensor nanobots can be inserted into the blood under the skin where they can check blood contents and warn of any possible diseases. They can also be used to monitor the sugar level in the blood. Advantages of using such nanobots are that they are very cheap to produce and are easily portable.
Collapse
|
10
|
Dynamic light scattering and zeta potential of colloidal mixtures of amelogenin and hydroxyapatite in calcium and phosphate rich ionic milieus. Arch Oral Biol 2010; 56:521-32. [PMID: 21146151 DOI: 10.1016/j.archoralbio.2010.11.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/03/2010] [Accepted: 11/15/2010] [Indexed: 11/21/2022]
Abstract
The concept of zeta-potential has been used for more than a century as a basic parameter in controlling the stability of colloidal suspensions, irrespective of the nature of their particulate ingredients--organic or inorganic. There are prospects that self-assembly of peptide species and the protein-mineral interactions related to biomineralization may be controlled using this fundamental physicochemical parameter. In this study, we have analysed the particle size and zeta-potential of the full-length recombinant human amelogenin (rH174), the main protein of the developing enamel matrix, in the presence of calcium and phosphate ions and hydroxyapatite (HAP) particles. As calcium and phosphate salts are introduced to rH174 sols in increments, zeta-potential of the rH174 nanospheres is more affected by negatively charged ions, suggesting their tendency to locate within the double charge layer. Phosphate ions have a more pronounced effect on both the zeta-potential and aggregation propensity of rH174 nanospheres compared to calcium ions. The isoelectric point of amelogenin was independent on the ionic strength of the solution and the concentration of calcium and/or phosphate ions. Whereas rH174 shows a higher affinity for phosphate than for calcium, HAP attracts both of these ions to the shear plane of the double layer. The parallel size and zeta-potential analysis of HAP and rH174 colloidal mixtures indicated that at pH 7.4, despite both HAP and rH174 particles being negatively charged, rH174 adsorbs well onto HAP particles. The process is slower at pH 7.4 than at pH 4.5 when the HAP surface is negatively charged and the rH174 nanosphere carries an overall positive charge. The results presented hereby demonstrate that electrostatic interactions can affect the kinetics of the adsorption of rH174 onto HAP.
Collapse
|
11
|
Uskoković V, Uskoković DP. Nanosized hydroxyapatite and other calcium phosphates: Chemistry of formation and application as drug and gene delivery agents. J Biomed Mater Res B Appl Biomater 2010; 96:152-91. [DOI: 10.1002/jbm.b.31746] [Citation(s) in RCA: 389] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Uskokovíc V. Major Challenges for the Modern Chemistry in Particular and Science in General. FOUNDATIONS OF SCIENCE 2010; 15:303-344. [PMID: 24465151 PMCID: PMC3898875 DOI: 10.1007/s10699-010-9185-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the past few hundred years, science has exerted an enormous influence on the way the world appears to human observers. Despite phenomenal accomplishments of science, science nowadays faces numerous challenges that threaten its continued success. As scientific inventions become embedded within human societies, the challenges are further multiplied. In this critical review, some of the critical challenges for the field of modern chemistry are discussed, including: (a) interlinking theoretical knowledge and experimental approaches; (b) implementing the principles of sustainability at the roots of the chemical design; (c) defining science from a philosophical perspective that acknowledges both pragmatic and realistic aspects thereof; (d) instigating interdisciplinary research; (e) learning to recognize and appreciate the aesthetic aspects of scientific knowledge and methodology, and promote truly inspiring education in chemistry. In the conclusion, I recapitulate that the evolution of human knowledge inherently depends upon our ability to adopt creative problem-solving attitudes, and that challenges will always be present within the scope of scientific interests.
Collapse
Affiliation(s)
- Vuk Uskokovíc
- Division of Biomaterials and Bioengineering, University of California, 707 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
13
|
Uskoković V, Bertassoni LE. Nanotechnology in Dental Sciences: Moving towards a Finer Way of Doing Dentistry. MATERIALS 2010; 3:1674-1691. [PMID: 27103959 PMCID: PMC4836616 DOI: 10.3390/ma3031674] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanotechnologies are predicted to revolutionize: (a) the control over materials properties at ultrafine scales; and (b) the sensitivity of tools and devices applied in various scientific and technological fields. In this short review, we argue that dentistry will be no exception to this trend. Here, we present a dynamic view of dental tissues, an adoption of which may lead to finer, more effective and minimally invasive reparation approaches. By doing so, we aim at providing insights into some of the breakthroughs relevant to understanding the genesis of dental tissues at the nanostructural level or generating dental materials with nanoscale critical boundaries. The lineage of the progress of dental science, including the projected path along the presumed nanotechnological direction of research and clinical application is mentioned too. We conclude by claiming that dentistry should follow the trend of probing matter at nanoscale that currently dominates both materials and biological sciences in order to improve on the research strategies and clinical techniques that have traditionally rested on mechanistic assumptions.
Collapse
Affiliation(s)
- Vuk Uskoković
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-415-412-0233
| | - Luiz Eduardo Bertassoni
- Biomaterials Research Unit, Faculty of Dentistry, University of Sydney, Sydney, Australia; E-Mail: (L.E.B.)
| |
Collapse
|